AN ECOLOGICAL PROTECTION FOR WOOD MATERIAL BY HYDROLYZED FEATHER KERATIN
 
More details
Hide details
 
Publication date: 2022-12-31
 
 
Drewno 2022;65(209)
 
REFERENCES (18)
1.
Arai K., Naito S., Dang V.B., Nagasawa N., and Hirano M. [1996]. Crosslinking Structure of Keratin. VI. Number, Type, and Location of Disulfide Crosslinkages in Low-Sulfur Protein of Wool Fiber and Their Relation to Permanent Set., J. Appl. Polym. Sci., 1996 [60]: 169–179.
 
2.
Basma Y. A., Bala M.S., Gupta A., Sharma S., Mishra P. [2020]. Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: A comparative analysis, Journal of King Saud University - Science, 32 [1]: 853-857.
 
3.
Endo R., Kamei K., Iida I., Kawahara,Y. [2008]. Dimensional stability of waterlogged wood treated with hydrolyzed feather keratin, Journal of Archaeological Science, 35 [5]: 1240-1246.
 
4.
Endo R., Kamei K., Iida I., Yokoyama Kawahara M. Y. [2010]. Physical and mechanical properties of waterlogged wood treated with hydrolyzed feather keratin. Journal of Archaeological Science, 37[6]: 1311-1316.
 
5.
Karthikeyan R, Balaji S, Sehgal P.K. [2007]. Industrial applications of keratins–a review. J Sci Ind Res 66: 710–715.
 
6.
Lehninger A.L. [1984]. Principles of biochemistry. Worth Publishers, New York. USA.
 
7.
Mohan D., Shi J., Nicholas DD., Pittman Jr CU., Steele PH., Cooper JE. [2008]. Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis. Chemosphere 71: 456–465.
 
8.
Mourant D., Yang D-Q., Lu X., Roy C. [2005]. Anti-fungal properties of the pyroligneous liquors from the pyrolysis of softwood bark. Wood and Fiber Science 37: 542– 548.
 
9.
Rabe S., Olivares G.S.,  Chavez R.P., Schartel B. [2019]. Natural Keratin and Coconut Fibres from Industrial Wastes in Flame Retarded Thermoplastic Starch Biocomposites Materials. 12 [3]: 344.
 
10.
Robbins C.R. [2002]. Chemical and physical behavior of human hair. Springer-Verlag New York. 10.1007/b97447.
 
11.
Rouse J.G., VanDyke M.E. [2010]. A review of keratin-based biomaterials for biomedical applications, materials, 3 [2]: 999-1014, https://doi.org/ 10.3390/ma3020999.
 
12.
Temiz A., Akbas S., Panov D., Terziev N., Alma M.H., Parlak S., Kose G. [2013b]. Chemical composition and efficiency of bio–oil obtained from giant cane (Arundo donax L.) as a wood preservative. BioResources 8: 2084–2098.
 
13.
Temiz A., Alma H., Terziev N., Palanti S., Feci E. [2010b]. Efficiency of bio-oil against wood destroying organisms. J. Biobased Mater. Bioenergy 4: 317–323.
 
14.
Temiz A., Kose G., Panov D., Terziev N., Alma M.H., Palanti S., Akbas S. [2013a]. Effect of bio-oil and epoxidized linseed oil on physical, mechanical, and biological properties of treated wood. J. Appl. Polym. Sci. 130: 1562–1569.
 
15.
Van Dyke M.E. , Nanney L.B.  [2002]. Elastomeric biomaterials from human hair keratins as bioactive wound dressings. Abst Papers Amer Chem Soc, 224 [1]: 36.
 
16.
Villanueva M.E., Puca M. Bravo J.P. Bafico J. Orto V.C.D. [2020]. Copello, G.J. Dual adsorbent-photocatalytic keratin-TiO2 nanocomposite for trimethoprim removal from wastewater. New J. Chem. 44: 10964–10972.
 
17.
Wang Y., Li P., Xiang P. Lu J. Yuan J. Shen J. [2016]. Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings. J. Mater. Chem. B, 4: 635–648.
 
18.
Yilgor N., Kartal S.N. [2010]. Heat modification of wood: chemical properties and resistance to mold and decay fungi. Forest Products Journal 60: 357–361.
 
eISSN:2956-9141
Journals System - logo
Scroll to top