DUCTILITY, LOAD CAPACITY AND BENDING STIFFNESS OF SCANDINAVIAN PINE BEAMS FROM WASTE TIMBER STRENGTHENED WITH JUTE FIBRES
 
More details
Hide details
 
Publication date: 2022-12-31
 
 
Drewno 2022;65(210)
 
REFERENCES (58)
1.
Ahmad J., Bhat J. [2013]: Ductility of timber beams strengthened using CFRP plates. International Journal of Civil Engineering and Technology (IJCIET), Volume 4, Issue 5, 42-54.
 
2.
Alam M.A., Nouri K., Jumaat M.Z., & Muda Z.C. [2015]: Flexural strengthening of reinforced concrete beam using jute rope composite plate. In The Third National Graduate Conference, April, Vol. 8, No. 9.
 
3.
Al-Hayek H., Svecova D. [2014]: Flexural strength of post tensioned timber beams. J. Compos. Constr., 18 (2), 04013036; http://dx.doi.org/10.1061/(ASC...) CC.1943-5614.0000431.
 
4.
André A., Kliger R. [2009]: Strengthening of timber beams using FRP with emphasis on compression strength: A state of the art review. The Second Official International Conference of International Institute for FRP in Construction for Asia - Pacific Region.
 
5.
Bank LC. [2006]: Composites for construction: structural design with FRP materials. John Wiley & Sons, New Jersey.
 
6.
Bohannan B. [1962]: Prestressing Wood Members. Forest Products Journal, University of Wisconsin.
 
7.
Borri A., Corradi M., Grazini A. [2005]: A method for flexural reinforcement of old wood beams with CFRP materials. Composites: Part B, Volume 36, Issue 2, 143-153.
 
8.
Borri A., Corradi M., Speranzini E. [2013]: Bending Tests on Natural Fiber Reinforced Fir Wooden Elements. Advanced Materials Research, 778, 537-544.
 
9.
Borri A., Corradi M., Speranzini E. [2013]: Reinforcement of wood with natural fibers. Compos. Part B: Eng., 53, 1-8.
 
10.
Borri A., Corradi M., Vignoli A. [2002]: New materials for strengthening and seismic upgrading interventions. International Workshop Ariadne 10, Arcchip, April 22–28, Prague, Czech Republic, 1–24.
 
11.
Brady J.F., Harte A.M. [2008]: Prestressed FRP flexural strengthening of softwood glue - laminated timber beams. In: Proceedings of 9th world conference on timber engineering, WCTE, Miyazaki, Japan.
 
12.
Brol J., Nowak T., Wdowiak A. [2018]: Numerical Analysis and Modelling of Timber Elements Strengthened with FRP Materials. Ann. Wars. Univ. Life Sci. For. Wood Technol., 104, 274–282.
 
13.
Brol J., Wdowiak-Postulak A. [2019]: Old Timber Reinforcement with FRP. Materials, 12, 4197.
 
14.
Chun Q., Balen K.V., Pan J.W. [2014]: Experimental study on flexural performance of small fir and pine timber beams strengthened with near-surface mounted carbon-fiber-reinforced polymer plates and rods, Int. J. Archit. Herit. 2014, 10 (1), 106–117.
 
15.
Corradi S., Isidori T., Corradi M., Soleri F., Olivari L. [2009]: Composite Boat Hulls with Bamboo Natural Fibres. Int J Materials and Product Technology, Inderscience Enterprises, 36, ¼, 73-89.
 
16.
De la Rosa García P., Escamilla A.C., González García MN. [2013]: Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Compos. Part B: Eng., 55, 528-536.
 
17.
De Luca V., Marano C. [2012]: Prestressed glulam timbers reinforced with steel bars. Construction and Building Materials, 30, 206-217.
 
18.
Donadon B.F., Mascia N.T., Vilela R., Trautwein LM. [2020]: Experimental investigation of glued-laminated timber beams with Vectran-FRP reinforcement. Engineering Structures, 202, 109818; https://doi.org/10.1016/j.engs....
 
19.
Echavarria C., Echavarría B., Cañola H. [2013]: Bamboo Reinforced Glulam Beams: An Alternative to CFRP Reinforced Glulam Beams. Advanced Materials Research, 778, 545-552; DOI: 10.4028/www.scientific.net/AMR.778.545.
 
20.
Gallant B.K. [2004]: Development of a new natural fiber- reinforced polymer composite and its application in glulam Tudor arches (Master’s thesis). Department of Civil Engineering, Dalhousie University.
 
21.
Glišovic´I., Stevanovic´B., Petrovic´ M. [2015]: Bending behaviour of glulam beams reinforced with carbon FRP plates, J. Civ. Eng. Manag., 21 (7), 923–932.
 
22.
Guan Z.W., Rodd P.D., Pope D.J. [2005]: Study of glulam beams pre-stressed with pultruded GRP. Computers and Structures, 83 (28), 2476-2487.
 
23.
Haiman M., Zagar Z. [2002]: Strengthening the Timber Glulam Beams with FRP Plates. The Proceedings of 7th World Conference on Timber Engineering, WCTE 2002, Perpustakaan Negara Malaysia, August, 270-276.
 
24.
Hollaway L., Teng JG. [2008]: Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymers (FRP) composites. Woodhead Publishing Limited, Cambridge (UK).
 
25.
Karbhari VM. [2007]: Durability of composites for civil structural applications. Woodhead Publishing Limited, Cambridge (UK).
 
26.
Kotwica J. [2004, 2005]: Konstrukcje drewniane w budownictwie tradycyjnym, Arkady, Warszawa.
 
27.
Kozakiewicz P., Krzosek S. [2013]: Inżynieria materiałów drzewnych, SGGW, Warszawa.
 
28.
Kromer K.H. [2009]: Physical properties of flax fibre for non-textile-use, Res. Agr. Eng., 55, 2009 (2), 52–61.
 
29.
Livas Ch., Ekevad M. & Öhman M. [2021]: Experimental analysis of passively and actively reinforced glued-laminated timber with focus on ductility. Wood Material Science & Engineering, 1-9; https://doi.org/10.1080/174802....
 
30.
Lopresto V., Leone C., De Iorio I. [2011]: Mechanical characterisation of basalt fibre reinforced plastic. Composites: Part B, 42, 717–723.
 
31.
McConnell E., McPolin D., Taylor S., 2014: Post-tensioning of glulam timber with steel tendons. Constr. Build. Mater., 73, 426-433.
 
32.
Negrão, J.H. [2016]: Preliminary study on wire prestressing methods for timber pieces reinforcement. Constr. Build. Mater., 102, 1093-1100.
 
33.
Persson M.P., Wogelberg S. [2011]: Analytical Models of Pre - stressed and Reinforced Glulam Beams, a Competitive Analysis of Strengthened Glulam Beams (Master’s thesis). Department of Civil and Environmental Engineering, Chalmers University of Technology.
 
34.
Plevris N., Triantafillou TC. [1992]: FRP - reinforced wood as structural material. J. Mater. Civ. Eng., ASCE 4 (3), 300-317.
 
35.
Raftery G.M., Kelly F. [2015]: Basalt FRP rods for reinforcement and repair of timber. Composites: Part B, 70, 9-19.
 
36.
Raftery G.M, Whelan C. [2014]: Low-grade glued laminated timber beams reinforced using improved. Construction and Building Materials, 52, 209-220.
 
37.
Sen T., Jagannatha Reddy H. N. [2013]: Pretreatment of Woven Jute FRP Composite and Its Use in Strengthening of Reinforced Concrete Beams in Flexure. Advanced Composites with Natural Reinforcement, Volume 2013, Article ID 128158, https://doi.org/10.1155/2013/1....
 
38.
Speranzini E., Agnetti S. [2012]: Structural performance of natural fibers reinforced timber beams. In: Proceeding of the 6th international conference on FRP composites in civil engineering (CICE 2012), 13 – 15 June, Rome, Italy.
 
39.
Speranzini E., Tralascia, S. [2010]: Engineered lumber: LVL and solid wood reinforced with natural fibres. In: World Conference on Timber Engineering (WCTE 2010), 20 – 24 June, Riva del Garda, Italy.
 
40.
Svecova D., Eden R.J. [2004]: Flexural and shear strengthening of timber beams using glass fibre reinforced polymer bars in experimental investigation. Canadian Journal of Civil Engineering, 31, 41-55.
 
41.
Triantafillou TC. [1997]: Shear reinforcement of wood using FRP materials. Journal of Materials in Civil Engineering ASCE, 9(2), 65-69.
 
42.
Wdowiak A. [2019]: Structural and Strength Properties of Bent Wooden Beams Reinforced with Fibre Composites. Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 12 April.
 
43.
Wdowiak A., Brol J. [2019a]: Effectiveness of Reinforcing Bent Non-Uniform Pre-Stressed Glulam Beams with Basalt Fibre Reinforced Polymers Rods. Materials, 12, 3141.
 
44.
Wdowiak A., Brol J. [2019b]: Methods of Strength Grading of Structural Timber—Comparative Analysis of Visual and Machine Grading on the Example of Scots Pine Timber from Four Natural Forest Regions of Poland. Struct. Environ., 11, 210–224.
 
45.
Wdowiak-Postulak A. [2020]: Natural Fibre as Reinforcement for Vintage Wood. Materials, 13, 4799.
 
46.
Wdowiak-Postulak A. [2021]: Basalt Fibre Reinforcement of Bent Heterogeneous Glued Laminated Beams. Materials, 14, 51.
 
47.
Wdowiak-Postulak A. [2022]: Nowoczesne budownictwo drewniane w technologii CLT na przykładzie budynku Bioklimatycznej Jednostki Modularnej. Materiały Bud., 3/2022, 49–51.
 
48.
Wdowiak-Postulak A., Brol J. [2020]: Ductility of the Tensile Zone in Bent Wooden Beams Strengthened with CFRP Materials. Materials, 13, 5451.
 
49.
Wdowiak-Postulak A., Świt G. [2021]: Behavior of Glulam Beams Strengthened in bending with BFRP Fabrics. Civil and Environmental Engineering Reports, 31(2), 1-14.
 
50.
Wei Y., Ji X., Duan M., Li G. [2017]: Flexural performance of bamboo scrimber beams strengthened with fiber-reinforced polymer. Construction and Building Materials, 142, 66–82; http://dx.doi.org/10.1016/j.co....
 
51.
Yang H., Liu W., Lu W., Zhu S., Geng Q. [2016]: Flexural behavior of FRP and steel reinforced glulam beams: Experimental and theoretical evaluation. Construction and Building Materials, 106, 550-563.
 
52.
Yeboah D., Taylor S., McPolin D., Gilfillan R. [2013] Pull-out behaviour of axially loaded basalt fibre reinforced polymer (BFRP) rods bonded perpendicular to the grain of glulam elements. Construction and Building Materials, 38, 962-969.
 
53.
Yusof A., Saleh A.L. [2010]: Flexural Strengthening of Timber Beams Using Glass Fibre Reinforced. Electronic Journal of Structural Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia.
 
54.
Zachary C., Kavan S. [2012]: Feasibility of strengthening glulam beams with prestressed basalt fibre reinforced polymers [Master’s thesis]. Chalmers University of Technology, Göteborg, Sweden.
 
55.
List of standards.
 
56.
PN-D-94021:2013-10 Softwood Structural Sawn Timber Sorted Using Strength Methods; Polish Committee for Standardization: Warsaw, Poland, 2013.
 
57.
PN-EN 338:2016-06 Construction timber - Strength classes; Polish Committee for Standardization: Warsaw, Poland, 2016.
 
58.
PN-EN 408+A1:2012 Timber Structures—Structural Timber and Glued Laminated Timber—Determination of Some Physical and Mechanical Properties; Polish Committee for Standardization: Warsaw, Poland, 2012.
 
eISSN:2956-9141
Journals System - logo
Scroll to top