ORIGINAL PAPER
Ecological footprint of wood-based products in the Ukrainian Carpathians region
More details
Hide details
1
Department of Ecological Economics and Business, Institute of Ecological Economics and Management, Ukrainian National Forestry University, Ukraine
2
Department of Technology of Furniture and Wooden Products, Institute of Woodworking Technology and Design, Ukrainian National Forestry University, Ukraine
3
Department of Silviculture, Institute of Forestry and Park and Garden Management, Ukrainian National Forestry University, Ukraine
Submission date: 2024-04-02
Final revision date: 2024-11-15
Acceptance date: 2024-11-29
Online publication date: 2025-02-24
Corresponding author
Oksana Pelyukh
Department of Ecological Economics and Business, Institute of Ecological Economics and Management, Ukrainian National Forestry University, Gen. Chuprynky Str., 79057, Lviv, Ukraine
KEYWORDS
TOPICS
ABSTRACT
In Ukraine’s Carpathian region, the absence of research on the ecological footprint (EF) of wood products poses challenges amidst unsustainable forestry practices, climate change, and human impacts that threaten forest ecosystems and local communities. This study addresses this gap by assessing and comparing the EF of furniture boards and solid structural timber produced by two wood-processing enterprises in the Carpathians. Using the ecological footprint of production methodology based on life cycle assessment, it calculates the cumulative environmental impacts of production, use, and disposal of these products, applying global productivity and equivalency coefficients. The analysis distinguishes between direct and indirect EFs: direct EF covers land use for forest resources and other areas, while indirect considers the land required to absorb CO2 emissions from production. Findings reveal that the total EF for producing 1 m³ of furniture boards at enterprise “A” requires 0.475 ha, while structural timber at enterprise “B” needs only 0.111 ha, underscoring the different environmental impacts. A primary contributor to the EF is heat energy for drying lumber, generated by burning wood waste. Offsetting CO2 emissions from this process requires 0.353 ha/m³ of land for furniture boards and 0.088 ha/m³ - for structural timber. Additionally, electricity consumption for machinery adds 0.081 ha/m³ for furniture boards and 0.011 ha/m³ for structural timber. Transport emissions further increase the EF, with 0.026 ha/m³ required for furniture boards and 0.002 ha/m³ for structural timber. These results highlight the need for enhanced resource efficiency to mitigate environmental impacts, particularly in heat generation and transportation.
REFERENCES (66)
1.
Abd’Razack N., bin Muhamad Ludin, A. [2013]: Wood Fuel Consumption and Ecological Footprint of African Cities. International Journal of Education and Research 1(2): 1-18.
2.
Alvarez S., Rubio A. [2015]: Compound method based on financial accounts versus process-based analysis in product carbon footprint: A comparison using wood pallets. Ecological indicators, 49, 88-94. DOI: 10.1016/j.ecolind.2014.10.005.
4.
Brown S., Jayant S., Cannell M., Kauppi P. [1996]: Mitigation of Carbon Emissions to the Atmosphere by Forest Management. Commonwealth Forestry Review 75(1), 80-91.
5.
Cespi D., Passarini F., Ciacci L., Vassura I., Castellani V., Collina E., et al. [2014]: Heating systems LCA: Comparison of biomass-based appliances. Int J Life Cycle Assessment 19(1): 89-99. DOI: 10.1007/s11367-013-0611-3.
6.
Chambers N., Lewis K. [2001]: Ecological Footprint Analysis: Towards a Sustainability Indicator for Business. Association of Chartered Certified Accountants. Research Report No 65. Certified Account Educational Trust, London.
7.
Chambers N., Simmons C., Wackernagel M. [2000]: Sharing Nature’s Interest. Ecological Footprints as an Indicator of Sustainability. Earthscan, London.
8.
Chen C.-C., Pao H.-T. [2024]: Circular economy and ecological footprint: A disaggregated analysis for the EU. Ecological Indicators 160: 111809. DOI: 10.1016/j.ecolind.2024.111809.
9.
Chomkhamsri K., Pelletier N. [2011]: Analysis of existing environmental footprint methodologies for products and organizations: recommendations, rationale, and alignment. Institute for Environment and Sustainability, 61.
10.
Cerutti A., Bagliani M., Beccaro G., Bounous G. [2010]: Application of ecological footprint analysis on nectarine production: methodological issues and results from a case study in Italy. Journal of Cleaner Production 18 (8): 771e776. DOI: 10.1016/j.jclepro.2010.01.009.
11.
Chernyavskyy M., Soloviy I., Henyk Ya., Kaspruk O., Henyk O., Melnykovych M., Herasym H., Savka V. [2011]: Problems of Local Population Legal Assess to Forest Resources and Illegal Logging in Forests of the Carpathians and the West Polissia. Green Cross Society, Liga-Press, Lviv, Ukraine.
12.
Cherubini F., Bird N., Cowie A., Jungmeier G., Schlamadinger B., Woess-Gallasch S. [2009]: Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling 53(8): 434-447. DOI: 10.1016/j.resconrec.2009.03.013.
13.
Cosola G., Grigolato S., Ackerman P., Monterotti S., Cavalli R. [2016]: Carbon footprint of forest operations under different management regimes. Croatian Journal of Forest Engineering 37(1): 201-217.
14.
de la Fuente T., González-García S., Athanassiadis D., Nordfjell T. [2017]: Fuel consumption and GHG emissions of forest biomass supply chains in Northern Sweden: A comparison analysis between integrated and conventional supply chains. Scandinavian Journal of Forest Research 32(7): 568-581. DOI: 10.1080/02827581.2016.1259424.
16.
Frey S., Harrison D., Billett E. [2006]: Ecological footprint analysis applied to mobile phones. Journal of Industrial Ecology 10 (1e2): 199e216. DOI: 10.1162/108819806775545330.
17.
Galli A., Kitzes J., Wermer P., Wackernagel M., Niccolucci V., Tiezzi E. [2007]: An exploration of the mathematics behind the Ecological Footprint. Ecodynamics 2: 249-257.
20.
Golubets M., Hnativ P., Kozlovskyi M. [2007]: Conceptual principles of sustainable development of the mountain region. Lviv, Ukraine.
21.
González-García S., Bonnesoeur V., Pizzi A., Feijoo G., Moreira M. [2014]: Comparing environmental impacts of different forest management scenarios for maritime pine biomass production in France. Journal of Cleaner Production 64: 356-367. DOI: 10.1016/j.jclepro.2013.07.040.
22.
Head M., Bernier P., Levasseur A., Beauregard R., Margni M. [2019]: Forestry carbon budget models to improve biogenic carbon accounting in life cycle assessment. Journal of Cleaner Production 213: 289-299. DOI: 10.1016/j.jclepro.2018.12.122.
23.
Henyk O., Melnykovych M., Henyk Ya., Kaspruk O. [2011]: Socio-economic causes and consequences of unauthorized forest cuts and their impact on welfare of local communities. Scientific Bulletin of UNFU 21(19): 113-117.
24.
Herva M., Álvarez A., Roca E. [2011]: Sustainable and safe design of footwear integrating ecological footprint and risk criteria. Journal of Hazardous Materials 192: 1876e1881. DOI: 10.1016/j.jhazmat.2011.07.028.
25.
Herva M., Franco A., Ferreiro S., Alvarez A., Roca E. [2008]: An approach for the application of the ecological footprint as environmental indicator in the textile sector. Journal of Hazardous Materials 156: 478e487. DOI: 10.1016/j.jhazmat.2007.12.077.
26.
Herva M., Franco-Uría A., Carrasco E., Roca E. [2012a]: Application of fuzzy logic for the integration of environmental criteria in ecodesign. Expert Systems with Applications 39: 4427e4431. DOI: 10.1016/j.eswa.2011.09.148.
27.
Herva M., García-Diéguez C., Franco-Uría A., Roca E. [2012b]: New insights on ecological footprinting as environmental indicator for production processes. Ecological Indicators 16: 84e90. DOI: 10.1016/j.ecolind.2011.04.029.
28.
Herva M., Hernando R., Carrasco E., Roca E. [2010]: Development of a methodology to assess the footprint of wastes. Journal of Hazardous Materials 180: 264e273. DOI: 10.1016/j.jhazmat.2010.04.026.
30.
Huijbregts M., Hellweg S., Frischknecht R., Hungerbühler K., Hendriks A. [2008]: Ecological footprint accounting in the life cycle assessment of products. Ecological Economics 64 (4): 798e807. DOI: 10.1016/j.ecolecon.2007.04.017.
31.
Jäppinen E., Korpinen O., Laitila J., Ranta T. [2014]: Greenhouse gas emissions of forest bioenergy supply and utilization in Finland. Renewable and Sustainable Energy Reviews 29: 369-382. DOI: 10.1016/j.rser.2013.08.101.
32.
Kissinger M., Fix J., Rees W. [2007]: Wood and non-wood pulp production: Comparative ecological footprinting on the Canadian prairies. Ecological economics 62(3-4): 552-558. DOI: 10.1016/j.ecolecon.2006.07.019.
33.
Kitzes J., Wackernagel M. [2009]: Answers to common questions in ecological footprint accounting. Ecological Indicators 9(4): 812e817. DOI: 10.1016/j.ecolind.2008.09.014.
34.
Krynytskyy H., Chernyavskyy M. [2014]: Close to nature and multifunctional forest management in the Carpathian region of Ukraine and Slovakia. Forza, Uzhhorod, Ukraine.
35.
Lenzen M., Lundie S., Bransgrove G., Charet L., Sack F. [2003]: Assessing the ecological footprint of a large metropolitan water supplier: lessons for water management and planning towards sustainability. Journal of Environmental Planning and Management 46: 113e141. DOI: 10.1080/713676700.
36.
Lloyd C. I., Iavorivska L., Zibtsev S., Myroniuk V., Brian R., Bilous A. [2023]. Russian Invasion: Rapid Assessment of Impact on Ukraine’s Forests. Proceedings of the Forestry Academy of Sciences of Ukraine, (25), 146-155. DOI:
https://doi.org/https://doi.or....
37.
Mamouni E., Ghadouani A., Schilizzi S., Mazzarol T. [2009]: Giving the consumer the choice: a methodology for product ecological footprint calculation. Ecological Economics 68: 2525e2534. DOI: 10.1016/j.ecolecon.2009.04.020.
38.
Mancini M., Galli A., Niccolucci V., Lin D., Bastianoni S., Wackernagel M., Marchettini N. [2016]: Ecological Footprint: Refining the carbon Footprint calculation. Ecological Indicator 61: 390-403. DOI: 10.1016/j.ecolind.2015.09.040.
39.
Melnykovych M., Soloviy I. [2014]: Contribution of forestry to the well-being of mountain forest dependent communities in the Ukrainian Carpathians. Proceedings of the forestry academy of sciences of Ukraine 12: 233-241.
40.
Murphy F., Devlin G., McDonnell K. [2014]: Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances. Applied Energy 116: 1-8. DOI: 10.1016/j.apenergy.2013.11.041.
42.
Nie Y., Ji C., Yang H. [2010]: The forest ecological footprint distribution of Chinese log imports. Forest Policy and Economics 12(3): 231-235. DOI: 10.1016/j.forpol.2009.11.003.
43.
Niccolucci V., Galli A., Kitzes J., Pulselli R.M., Borsa S., Marchettini N. [2008]: Ecological footprint analysis applied to the production of two Italian wines. Agriculture Ecosystems & Environment 128 (3): 162-166. DOI: 10.1016/j.agee.2008.05.015.
44.
Osadchuk L., Riabchuk V., Hrechanyk R. [2018]. Role of non-timber Forest Resources in sustainable Forest Management in Ukraine. Proceedings of the Forestry Academy of Sciences of Ukraine, (14), 92-97. DOI:
https://doi.org/https://doi.or....
45.
Palmer A. [1998]: Evaluating Ecological Footprints. Electronic Green Journal 1(9). DOI: 10.5070/G31910324.
46.
Pelyukh O., Soloviy I., Kiyko O., Ilkiv M., Chelepis T., Lavnyy V. [2023]: Product biodiversity footprint: theory and estimation methodology. Proceedings of the forestry academy of sciences of Ukraine 25: 156-166.
47.
Pierobon F., Zanetti M., Grigolato S., Sgarbossa A., Anfodillo T., Cavalli R. [2015]: Life cycle environmental impact of firewood production – a case study in Italy. Applied. Energy., 150, 185–195. DOI: 10.1016/j.apenergy.2015.04.033.
48.
Poliakova L, Abruscato S. [2022]: Supporting the recovery and sustainable management of Ukrainian forests and its forest sector. Forest Europe, Bonn, Germany, 31 p.
49.
Polgár A. [2023]: Carbon footprint and sustainability assessment of wood utilisation in Hungary. Environment, Development and Sustainability, 1-25. DOI: 10.1007/s10668-023-03571-9.
50.
Proto A., Bacenetti J., Macri G., Zimbalatti G. [2017]: Roundwood and bioenergy production from forestry: Environmental impact assessment considering different logging systems. Journal of Cleaner Production, 165, 1485–1498. DOI: 10.1016/j.jclepro.2017.07.227.
51.
Saravia-Cortez A., Herva M., García-Diéguez C., Roca E. [2013]: Assessing environmental sustainability of particleboard production process by ecological footprint. Journal of Cleaner Production, 52, 301-308. DOI: 10.1016/j.jclepro.2013.02.006.
52.
Sgarbossa A., Boschiero M., Pierobon F., Cavalli R., Zanetti M. [2020]: Comparative life cycle assessment of bioenergy production from different wood pellet supply chains. Forests, 11(11), 1127. DOI: doi.org/10.3390/f11111127.
53.
Siche J., Agostinho F., Ortega E., Romeiro A. [2008]: Sustainability of nations by indices: comparative study between environmental sustainability index, ecological footprint and the emergy performance indices. Ecological Economics 66, 628e637. DOI: 10.1016/j.ecolecon.2007.10.023.
54.
Siche R., Pereira L., Agostinho F., Ortega E. [2010]: Convergence of ecological footprint and emergy analysis as a sustainability indicator of countries: Peru as case study. Communications in Nonlinear Science and Numerical Simulation, 15(10), 3182-3192. DOI: 10.1016/j.cnsns.2009.10.027.
55.
Soloviy I, Chernyavsky M. [2011]: Environmental, Economic and Social Impact of Inefficient and Unsustainable Forest Practices and Illegal Logging in Ukraine. Green Cross Society, Liga-Press, Lviv, Ukraine.
56.
State Forest Resources Agency of Ukraine [2022]: Public report of the head of the State Forest Resources Agency of Ukraine for 2021. Retried from:
https://forest.gov.ua/storage/....
57.
State Statistics Committee of Ukraine [2011]: On the approval of the Methodology for calculating emissions of pollutants and greenhouse gasses into the air from the use of fuel for household needs in households. Retried from:
https://ukrstat.gov.ua/metod_p....
58.
Stoyko S. [1998]: Virgin ecosystems of the Carpathians and their significance for biological diversity conservation and maintenance of the sustainable development of forestry. Issues of sustainable development in the Carpathian region, 2, 142–148.
59.
Stryamets N., Elbakidze M., Angelstam P. [2011]. Role of non-wood forest products for local livelihoods in countries with transition and market economies: case studies in Ukraine and Sweden. Scandinavian Journal of Forest Research, 27(1), 74–87. DOI:
https://doi.org/10.1080/028275....
60.
Szarka N., García Laverde L., Thrän D., Kiyko O., Ilkiv M., Moravčíková D., ... & Martín Jimenez I. [2023]: Stakeholder Engagement in the Co-Design of Regional Bioeconomy Strategies. Sustainability 15(8): 6967. DOI: 10.3390/su15086967.
61.
The Main Department of Statistics of the Ternopil region [2024]: Calculation of emissions of pollutants and greenhouse gases into the atmosphere when burning natural gas, fuel oil, hard or brown coal. Retried from:
https://www.te.ukrstat.gov.ua/....
62.
Valente C., Spinelli R., Hillring B. [2011]: LCA of environmental and socio-economic impacts related to wood energy production in alpine conditions: Valle di Fiemme (Italy). Journal of Cleaner Production 19[17–18): 1931-1938. DOI: 10.1016/j.jclepro.2011.06.026.
63.
Volchyn I., Chernyavskyi M., Bondarenko V. [2013]: Energy: history, modernity and future. Kyiv 264 p.
64.
Wackernagel M., Rees W. [1996]: Our Ecological Footprint: Reducing Human Impact on the Earth. New Society Publishers, Canada.
65.
Wihersaari M. [2005]: Greenhouse gas emissions from final harvest fuel chip production in Finland. Biomass and Bioenergy 28(5): 435-443. DOI: 10.1016/j.biombioe.2004.11.007.
66.
Zhyla T., Soloviy I., Zhyla A., Volosyanchuk R. [2018]. Mountain communities' households Dependency on Provisioning Forest Ecosystem Services: The Case Of Ukrainian Carpathians. Bulletin of the Transilvania University of Brasov. Forestry, Wood Industry, Agricultural Food Engineering. Series II, 11(2), 63-80. - webbut2.unitbv.ro/bu2018/series ii/2018/BULETIN I/06_Zhyla.pdf.