ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
This study investigates the effects of different formaldehyde scavenger (FS) ratios on the physical, mechanical, and chemical properties of fiberboard composites. Experimental analyses included measurements of thickness, density, modulus of rupture (MOR), modulus of elasticity (MOE), internal bond strength (IB), shear strength (SS), moisture content, thickness swelling (TS), water absorption (WA), and formaldehyde emission (FE) levels. The results indicate that an increase in the FS ratio leads to a significant decline in mechanical properties. Specifically, MOR, MOE, and IB values decreased by 17.97%, 15.65%, and 16.33%, respectively. Conversely, changes in TS and WA were observed, with TS increasing by up to 22.68% and WA decreasing by as much as 16.90%. In terms of formaldehyde emissions, a significant reduction was observed as the FS ratio increased. At the 15 ratio, formaldehyde emissions decreased by 43.24%, which is considered a positive outcome in terms of environmental and health impacts. Overall, the use of FS in specific ratios reduces FE while causing certain reductions in mechanical properties. These findings highlight the importance of optimizing FS usage for the production of low-FE fiberboards.
REFERENCES (33)
1.
Antov P., Savov V., Neykov N. [2020]: Reduction of formaldehyde emission from engineered wood panels by formaldehyde scavengers—A review. In Proceedings of the 13th International Scientific Conference Wood EMA 2020 and 31st International Scientific Conference ICWST (pp. 7-11).
 
2.
Baharoğlu M., Nemli G., Sarı B., Bardak S., Ayrılmış N. [2012]: The influence of moisture content of raw material on the physical and mechanical properties, surface roughness, wettability, and formaldehyde emission of particleboard composite. Composites Part B: Engineering, 43(5), 2448-2451. DOI: 10.1016/j.compositesb.2011.10.020.
 
3.
Costa N.A., Ohlmeyer M., Ferra J., Magalhães F.D., Mendes A., Carvalho L. [2014]: The influence of scavengers on VOC emissions in particleboards made from pine and poplar. European Journal of Wood and Wood Products, 72, 117-121. DOI: 10.1007/s00107-013-0761-9.
 
4.
Costa N.A., Pereira J., Ferra J., Cruz P., Martins J., Magalhães F.D., Mendes A., Carvalho L.H. [2013]: Scavengers for achieving zero formaldehyde emission of wood-based panels. Wood Science and Technology 47: 1261-1272. DOI: 10.1007/s00226-013-0573-4.
 
5.
Dinwoodie J. M. [1983]: Wood adhesives chemistry and technology (A. Pizzi, Ed., Vol. 1, pp. 1-58). Marcel Dekker.
 
6.
Dorieh A., Selakjani P.P., Shahavi M.H., Pizzi A., Movahed S.G., Pour M.F., Aghaei R. [2022]: Recent developments in the performance of micro/nanoparticle-modified urea-formaldehyde resins used as wood-based composite binders: A review. International Journal of Adhesion and Adhesives, 114, 103106. DOI: 10.1016/j.ijadhadh.2022.103106.
 
7.
Eom Y.G., Kim J.S., Kim S., Kim J.A., Kim H.J. [2006]: Reduction of formaldehyde emission from particleboards by bio-scavengers. Journal of the Korean Wood Science and Technology 34(5): 29-41.
 
8.
Ghani A., Ashaari Z., Bawon P., Lee S.H. [2018]: Reducing formaldehyde emission of urea formaldehyde-bonded particleboard by addition of amines as formaldehyde scavenger. Building and Environment 142: 188-194. DOI: 10.1016/j.buildenv.2018.06.020.
 
9.
Gurtekin A., Oguz M. [2006]: Mobilya ve dekorasyon gereç bilgisi, mesleki ve teknik öğretim okulları, Milsan Basın San A.Ş., Istanbul, Turkey.
 
10.
Hassannejad H., Shalbafan A., Rahmaninia M. [2020]: Reduction of formaldehyde emission from medium density fiberboard by chitosan as scavenger. The Journal of Adhesion. DOI: 10.1080/00218464.2018.1515631.
 
11.
Hemmilä V., Adamopoulos S., Karlsson O., Kumar A. [2017]: Development of sustainable bio-adhesives for engineered wood panels—A review. RSC Advances 7, 38604-38630.
 
12.
Hojo H., Fukai K., Nanjo F. [2000]: Application of green tea catechins as formaldehyde scavengers. Journal of the Japan Wood Research Society, 46(3), 231-37.
 
13.
Kord B., Movahedi F., Adlnasab L., Ayrilmis N. [2022]: Effect of novel scavengers based on phenolic compounds on formaldehyde emission and physical-mechanical properties of particleboard. Wood Material Science & Engineering, 17(6): 954-964. DOI: 10.1080/17480272.2021.1978542.
 
14.
Kristak L., Antov P., Bekhta P., Lubis M. A. R., Iswanto A.H., Reh R., Sedliacik J., Savov V., Taghiyari H.R., Papadopoulos A.N., Pizzi A., Hejna A. [2023]: Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: A review. Wood Material Science & Engineering, 18(2), 763-782. DOI: 10.1080/17480272.2022.2056080.
 
15.
Lee Y.K., Kim H.J. [2013]: Relationship between curing activation energy and free formaldehyde content in urea-formaldehyde resins. Journal of Adhesion Science and Technology, 27(5-6), 598-609. DOI: 10.1080/01694243.2012.690620.
 
16.
Lum W.C., Lee S.H., H'ng P.S. [2014]: Effects of formaldehyde catcher on some properties of particleboard with different ratio of surface to core layer. Asian Journal of Applied Sciences 7(1): 22-29. DOI: 10.3923/ajaps.2014.22.29.
 
17.
Mantanis G.I., Athanassiadou E.T., Barbu M.C., Wijnendaele K. [2018]: Adhesive systems used in the European particleboard, MDF and OSB industries. Wood Material Science & Engineering, 13(2): 104-116. DOI: 10.1080/17480272.2017.1396622.
 
18.
Mantanis G.I., Athanassiadou E.T., Barbu M.C., Wijnendaele K. [2018]: Adhesive systems used in the European particleboard, MDF and OSB industries. Wood Material Science and Engineering 13(2), 104-116. DOI: 10.1080/17480272.2017.1396622.
 
19.
Myers G.E. [1984]: How mole ratio of UF resin affects formaldehyde emission and other properties: a literature critique. Forest Products Journal, 34(5), 35-41.
 
20.
Nakano K., Ando K., Takigawa M., Hattori N. [2018]: Life cycle assessment of wood-based boards produced in Japan and impact of formaldehyde emissions during the use stage. The International Journal of Life Cycle Assessment 23: 957-969. DOI: 10.1007/s11367-017-1343-6.
 
21.
Neimsuwan T., Siramon P., Hengniran P., Punsuvon V. [2017]: Effect of tannin addition as a bio-scavenger on formaldehyde content in particleboard. Journal of Tropical Forest Research 1(2): 45-56.
 
22.
Park B.D., Kang E.C., Park J.Y. [2008]: Thermal curing behavior of modified urea‐formaldehyde resin adhesives with two formaldehyde scavengers and their influence on adhesion performance. Journal of Applied Polymer Science, 110(3), 1573-1580. DOI: 10.1002/app.28748.
 
23.
Pizzi A. [1983]: Wood adhesives chemistry and technology (A. Pizzi, Ed., Vol. 1, pp. 59-104). Marcel Dekker.
 
24.
Pizzi A., Mittal K.L. [2003]: Urea-formaldehyde adhesives. In Handbook of adhesive technology (2nd ed.). Marcel Dekker.
 
25.
Puttasukkha J., Khongtong S., Chaowana P. [2015]: Curing behavior and bonding performance of urea formaldehyde resin admixed with formaldehyde scavenger. Wood Research, 60(4), 645-654.
 
26.
Que Z., Furuno T., Katoh S., Nishino Y. [2007]: Evaluation of three test methods in determination of formaldehyde emission from particleboard bonded with different mole ratio in the urea-formaldehyde resin. Building and Environment, 42(3), 1242-1249. DOI: 10.1016/j.buildenv.2005.11.026.
 
27.
Roffael E. [1993]: Formaldehyde release from particleboard and other wood based panels (pp. ix+-281). ISBN. 978-983-9592-15-3.
 
28.
Sanivar N., Zorlu I. [1980]: Ağaçişleri Gereç Bilgisi Temel Ders Kitabı, Mesleki ve Teknik Eğitim Öğretim Kitapları [Woodworking Materials Knowledge Basic Textbook, Vocational and Technical Education Teaching Books], Milli Eğitim Basımevi, İstanbul, Turkey.
 
29.
Selakjani P.P., Dorieh A., Pizzi A., Shahavi M.H., Hasankhah A., Shekarsaraee S., Ashouri M., Movahed S.G., Abatari M.N. [2021]: Reducing free formaldehyde emission, improvement of thickness swelling and increasing storage stability of novel medium density fiberboard by urea-formaldehyde adhesive modified by phenol derivatives. International Journal of Adhesion and Adhesives, 111, 102962.
 
30.
Silva D.A.L., Lahr F.A.R., Varanda L.D., Christoforo A.L., Ometto A.R. [2015]: Environmental performance assessment of the melamine-urea-formaldehyde (MUF) resin manufacture: A case study in Brazil. Journal of Cleaner Production, 96, 299-307. DOI: 10.1016/j.jclepro.2014.03.007.
 
31.
Tohmura S.I., Hse C.Y., Higuchi M. [2000]: Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins. Journal of Wood Science, 46, 303-309.
 
32.
World Health Organization, [1989]: Formaldehyde/published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization.
 
33.
Zhang J., Kang H., Gao Q., Li J., Pizzi A., Delmotte L. [2014]: Performances of larch (Larix gmelini) tannin modified urea–formaldehyde (TUF) resin and plywood bonded by TUF resin. Journal of Applied Polymer Science, 131(22). DOI: 10.1002/app.41064.
 
eISSN:2956-9141
Journals System - logo
Scroll to top