ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Enzymatic hydrolysis is crucial in processing lignocellulosic biomass into valuable products in biorefineries. Due to the synergistic action of used enzymes the cellulose and hemicelluloses chains are digested into fermentable monosaccharides. It is known that the process efficiency can be improved by the separation of reaction end-products being cellulases' inhibitors. The work aimed to investigate the efficiency of enzymatic hydrolysis of corn stover and poplar wood biomass in a stirred dead-end membrane bioreactor, enabling continuous separation of end-products. Four UF membranes with different molecular weight cut-offs were tested, and PES 5 kDa was chosen as the most suitable. To pretreat biomass before hydrolysis, soaking in aqueous ammonia (SAA) and liquid hot water (LHW) methods were compared. The LHW treatment allowed for obtaining relatively high glucose contents (up to 73.7%). In turn, the SAA method led to high xylose contents up to 23.5%. In general, remarkable improvements (up to 72.6%) in monosaccharides contents in hydrolyzates after membrane bioreactor were observed. Only in the case of corn stover after SAA pretreatment, the reaction efficiencies in the membrane bioreactor were similar to those obtained in a batch mode with an improvement of 4.3%.
REFERENCES (34)
1.
Akus-Szylberg F., Antczak A., Bytner O., Radomski A., Krajewski K., Zawadzki J. [2018]: The effect of pre-treatment of corn stover with liquid hot water on its chemical composition and enzymatic hydrolysis. Przemysł Chemiczny 97[11]: 1866-1869.
 
2.
Akus-Szylberg F., Antczak A., Zawadzki J. [2020]: Hydrothermal pretreatment of poplar (Populus trichocarpa) wood and its impact on chemical composition and enzymatic hydrolysis yield. Drewno 63[206]: 5-18.
 
3.
Akus-Szylberg F., Antczak A., Zawadzki J. [2021a]: Effect of soaking aqueous ammonia pretreatment on chemical composition and enzymatic hydrolysis of corn stover. Annals of Warsaw University of Life Sciences, Forestry and Wood Technology 115: 29-36.
 
4.
Akus-Szylberg F., Antczak A., Zawadzki J. [2021b]: Effects of soaking aqueous ammonia pretreatment on selected properties and enzymatic hydrolysis of poplar (Populus trichocarpa) wood. Bioresources 16[3]: 5618-5627.
 
5.
Alvira P., Tomas-Pejo E., Ballesteros M., Negro M.J. [2010]: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology 101: 4851-4861.
 
6.
Antczak A., Dąbkowska-Susfał K., Walkowiak M., Witczak M., Szadkowski J., Cichy W., Radomski A., Zawadzki J. [2023]: The influence of selected physico-chemical pretreatment methods on chemical composition and enzymatic hydrolysis yield of fast-growing poplar wood and corn stover. Drewno 66[211]: 1-13.
 
7.
Antczak A., Marchwicka M., Szadkowski J., Drożdżek M., Gawron J., Radomski A., Zawadzki J. [2018]: Sugars yield obtained after acid and enzymatic hydrolysis of fast-growing poplar wood species. BioResources 13[4]: 8629-8645.
 
8.
Antczak A., Szadkowski J., Szadkowska D., Zawadzki J. [2022]: Assessment of the effectiveness of liquid hot water and steam explosion pretreatments of fast-growing poplar (Populus trichocarpa) wood. Wood Science and Technology 56: 87-109.
 
9.
Bernacki M.J., Mielecki J., Antczak A., Drożdżek M., Witoń D., Dąbrowska-Bronk J., Gawroński P., Burdiak P., Marchwicka M., Rusaczonek A., Dąbkowska-Susfał K., Strobel W.R., Mellerowicz E.J., Zawadzki J., Szechyńska-Hebda M., Karpiński S. [2023]: Biotechnological Potential of the Stress Response and Plant Cell Death Regulators Proteins in the Biofuel Industry. Cells 12: 2018.
 
10.
Conidi C., Mazzei R., Cassano A., Giorno L. [2014]: Integrated membrane system for the production of phytotherapics from olive mill wastewaters. Journal of Membrane Science 454: 322-329.
 
11.
Dąbkowska-Susfał K. [2023]: Influence of Tween 80 on enzymatic hydrolysis of corn straw integrated with membrane separation. Industrial Crops and Products 203: 117132.
 
12.
Dąbkowska-Susfał K., Sobieszuk P., Lipińska J., Kołtuniewicz A.B. [2024]: Hydrodynamic studies of innovative membrane reactor for enzymatic hydrolysis of lignocellulosic waste. Biotechnology Journal 19: 2300602.
 
13.
El-Zawawy W.K., Ibrahim M.M., Abdel-Fattah Y.R., Soliman N.A., Mahmoud M.M. 2011: Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydrate Polymers 84[3]: 865-871.
 
14.
Gan Q., Allen S.J., Taylor G. [2002]: Design and operation of an integrated membrane reactor for enzymatic cellulose hydrolysis. Biochemical Engineering Journal 12: 223-229.
 
15.
Gao J., Yang X., Wan J., He Y., Chang C., Ma X., Bai J. [2016]: Delignification kinetics of corn stover with aqueous ammonia soaking pretreatment. BioResources 11[1]: 2403-2416.
 
16.
Hsieh C.W.C., Cannella D., Jørgensen H., Felby C., Thygesen L.G. [2014]: Cellulase inhibition by high concentrations of monosaccharides. Journal of Agricultural and Food Chemistry 62: 3800-3805.
 
17.
Isikgor F.H., Becer C.R. [2015]: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry 6: 4497-4559.
 
18.
Jung W., Sharma-Shivappa R., Kolar P. [2019]: Effect of enzyme interaction with lignin isolated from pretreated Miscanthus × giganteus on cellulolytic effciency. Processes 7: 755.
 
19.
Kołtuniewicz A.B., Dąbkowska K. [2016]: Biorefineries - factories of the future. Chemical and Process Engineering 37 [1]: 109-119.
 
20.
Krutul D., Szadkowski J., Výbohová E., Kučerová V., Čabalová I., Antczak A., Szadkowska D., Drożdżek M., Zawadzki J. [2024]: Effect of steam explosion pretreatment on chosen saccharides yield and cellulose structure from fast‑growing poplar (Populus deltoides × maximowiczii) wood. Wood Science and Technology 58: 441-458.
 
21.
Lesar B., Humar M., Hora G., Hachmeister P., Schmiedl D., Pindel E., Siika-aho M., Liitiä T. [2016]: Utilization of recycled wood in biorefineries: preliminary results of steam explosion and ethanol/water organosolv pulping without a catalyst. European Journal of Wood and Wood Products 74: 711-723.
 
22.
Li X., Lu J., Zhao J., Qu Y. [2014]: Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One 9: e95455.
 
23.
Li W., Walz J.Y. [2014]: Porous Nanocomposites with Integrated Internal Domains: Application to Separation Membranes. Scientific Reports 4: 4418.
 
24.
Mangan D., Cornaggia C., McKie V., Kargelis T., McCleary B.V. [2016]: A novel automatable enzyme-coupled colorimetric assay for endo-1,4-β-glucanase (cellulase). Analytical and Bioanalytical Chemistry 408: 4159-4168.
 
25.
Rathour R.K., Behl M., Dhashmana K., Sakhuja D., Ghai H., Sharma N., Meena K.R., Bhatt A.K., Bhatia R.K. [2023]: Non-food crops derived lignocellulose biorefinery for sustainable production of biomaterials, biochemicals and bioenergy: A review on trends and techniques. Industrial Crops and Products 204: 117220.
 
26.
Reshmy R., Philip E., Madhavan A., Sirohi R., Pugazhendhi A., Binod P., Awasthi, M.K., Vivek N., Kumar V., Sindhu R. [2022]: Lignocellulose in future biorefineries: Strategies for cost-effective production of biomaterials and bioenergy. Bioresource Technology 344: 126241.
 
27.
Smith B.T., Knutsen J.S., Davis R.H. [2010]: Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass. Applied Biochemistry and Biotechnology 161: 468-482.
 
28.
Wyman C.E., Balan V., Dale B.E., Elander R.T., Falls M., Hames B., Holtzapple M.T., Ladisch M.R., Lee Y.Y., Mosier N., Pallapolu V.R., Shi J., Thomas S.R., Warner R.E. [2011]: Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresource Technology 102: 11052-11062.
 
29.
Yang S., Ding W., Chen H. [2006]: Enzymatic hydrolysis of rice straw in a tubular reactor coupled with UF membrane. Process Biochemistry 41: 721-725.
 
30.
Yang S., Ding W., Chen H. [2009]: Enzymatic hydrolysis of corn stalk in a hollow fiber ultrafiltration membrane reactor. Biomass and Bioenergy 33: 332-336.
 
31.
Zborowska M., Waliszewska H., Waliszewska B., Borysiak S., Brozdowski J., Stachowiak-Wencek A. [2022]: Conversion of Carbohydrates in Lignocellulosic Biomass after Chemical Pretreatment. Energies 15: 254.
 
32.
Zhang M., Su R., Li Q., Qi W., He Z. [2011]: Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor. BioEnergy Research 4: 134-140.
 
33.
Zheng Y., Zhongli P., Ruihong Z. [2009]: Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering 2[3]: 51-69.
 
34.
Zoghlami A., Paës G. [2019]: Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Frontiers in Chemistry 7: 874.
 
eISSN:2956-9141
Journals System - logo
Scroll to top