ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The manufacture of packaging products requires determining the strength requirements of the components that make up the structural elements of pallets, crates and other packaging. Wood, as a renewable material, is the basic raw material for manufacturing wooden pallets. The premise of the research is that the strength of pallets is derived from the characteristics of the components of the subassemblies. Strength tests of lumber were carried out, which determine the evaluation of the suitability of sawn materials. Verification of raw material properties determines the adaptation of individual assemblies to static and dynamic force loads. Pine (Pinus sylvestris L.) lumber was verified, taking into account the origin of the cross-sectional area and the presence of anatomical structure features. The results of the study confirm the influence of wood origin on the suitability of pine wood for wood packaging. The influence of a certain origin from the log can translate into changes in strength properties. It was found that wood density is not a critical parameter for evaluating the strength of lumber and product. Tests of separated structural lumber for wood packaging indicate significant differences in the condition of the wood and the magnitude of the strength parameter.
REFERENCES (73)
1.
Biebl, S., Querner, P. [2020]: Transportation of Wood Boring Beetles in Wooden Transport Boxes, Wooden Pallets, and Newly Bought Wood in Museums. Studies in Conservation, 1–7. doi:10.1080/00393630.2020.1756126.
 
2.
Buehlmann, U., Bumgardner, M., Fluharty, T. [2009]: Ban on landfilling of wooden pallets in North Carolina: an assessment of recycling and industry capacity. Journal of Cleaner Production 17[2], 271-275. https://doi.org/10.1016/j.jcle....
 
3.
Clayton, A. P., Horvath, L., Bouldin, J., Gething, B. [2019]: Investigation of the effect of column stacked corrugated boxes on load bridging using partial four-way stringer class wooden pallets. Packaging Technology and Science. doi:10.1002/pts.2438.
 
4.
Deviatkin, I., Horttanainen, M. [2020]: Carbon footprint of an EUR-sized wooden and a plastic pallet. E3S Web of Conferences, 158, 03001. doi:10.1051/e3sconf/202015803001.
 
5.
Deviatkin, I., Khan, M., Ernst, E., Horttanainen, M. [2019]: Wooden and Plastic Pallets: A Review of Life Cycle Assessment [LCA) Studies. Sustainability 2019, 11, 5750. https://doi.org/10.3390/su1120....
 
6.
Dixon-Hardy, D. W., Curran, B. A. [2009]:. Types of packaging waste from secondary sources [supermarkets) – The situation in the UK. Waste Management, 29[3], 1198–1207. doi:10.1016/j.wasman.2008.06.045.
 
7.
Dunno, Kyle and Symanski, Maria [2021]: Evaluation of stretch film behavior during long-term storage under different atmospheric conditions. Journal of Applied Packaging Research 13 [1], 3. https://scholarworks.rit.edu/j....
 
8.
Durmaz, E., Ucuncu, T., Karamanoglu, M., Kaymakcı, A. [2019]: Effects of heat treatment on some characteristics of Scots pine (Pinus sylvestris L.) wood. BioResources 14[4], 9531-9543. DOI: 10.15376/biores.14.4.9531-9543.
 
9.
Dzbeński, W., Kozakiewicz, K., Krzosek, S. [2005]: Wytrzymałościowe sortowanie tarcicy budowlano-konstrukcyjnej. Warszawa.
 
10.
EN - ISO 8611-1:2022: Pallets for moving loads - Flat pallets - Part 1: Test methods.
 
11.
EN ISO 13119:2022: Roundwood and sawn timber. Methods for measuring biological degradation.
 
12.
EN 13183-2:2002/AC:2003: Moisture content of lumber ‒ Part 2: Determination of moisture content using an electric resistance moisture meter.
 
13.
EN 13382:2002:- Flat cargo pallets - Basic parameters.
 
14.
EN 14081-1:2016+A1:2019: Wooden structures - Strength-graded rectangular structural timber - Part 1: General requirements.
 
15.
EN 15228; 2009: Structural wood ‒ Structural wood protected against biological corrosion.
 
16.
EN 336:2013: Structural wood ‒ Dimensions, allowable deviations.
 
17.
EN 338:2016: Structural wood ‒ Strength classes.
 
18.
EN 350-1; 2000: Durability of wood and wood-based materials - Natural durability of solid wood - Guidelines on the principles of testing and classifying the natural durability of wood.
 
19.
EN 350-2; 2000: Durability of wood and wood-based materials - Natural durability of solid wood - Guidelines on the natural durability and susceptibility to saturation of selected wood species of importance in Europe.
 
20.
EN 380:1993: Wooden structures - Test methods - General principles of tests under static load.
 
21.
EN 384:2016+A2:2022: Structural wood - Determination of the values of characteristic mechanical properties and density.
 
22.
EN 408:2012: Wooden structures - Solid and glued structural timber - Determination of certain physical and mechanical properties.
 
23.
Fundova, I.; Funda, T.; Wu, H.X. [2019]: Non-Destructive Assessment of Wood Stiffness in Scots Pine (Pinus sylvestris L.) and its Use in Forest Tree Improvement. Forests 10, 491. https://doi.org/10.3390/f10060....
 
24.
Garbachevski, É. M., Hillig, E., Abreu Neto, R. D., Retslaff, F. A. D. S., Koehler, H. S. [2022]: Physico-mechanical properties and growth characteristics of pine juvenile wood as a function of age and planting spacing. Revista Árvore 46. https://doi.org/10.1590/1806-9....
 
25.
García-Durañona, L., Farreny, R., Navarro, P., Boschmonart-Rives, J. [2016]: Life Cycle Assessment of a coniferous wood supply chain for pallet production in Catalonia, Spain. Journal of Cleaner Production 137, 178–188. doi:10.1016/j.jclepro.2016.07.032.
 
26.
Hellström, D. Nilsson, F. [2011]: Logistics‐driven packaging innovation: a case study at IKEA. International Journal of Retail & Distribution Management 39 [9], 638-657. https://doi.org/10.1108/095905....
 
27.
Hoefnagels, R., Junginger, M., Faaij, A. [2014]: The economic potential of wood pellet production from alternative, low-value wood sources in the southeast of the U.S. Biomass and Bioenergy 71, 443–454. doi:10.1016/j.biombioe.2014.09.00.
 
28.
Hong, Z.; Fries, A.; Wu, H. [2014]: High negative genetic correlations between growth traits and wood properties suggest incorporating multiple traits selection including economic weights for the future Scots pine breeding programs. Ann. For. Sci. 71, 463–472. https://doi.org/10.1007/s13595....
 
29.
International Organization for Standardization. ISO Standard No. 8611-1:2011. Pallets for Materials Handling-Flat Pallets-Part 1: Test Methods. International Organization for Standardization: Geneva, Switzerland, 2011.
 
30.
Irby NE, França FJN, Barnes HM, Seale RD, Shmulsky R. [2020]: Effect of growth rings per inch and density on compression parallel to grain in southern pine lumber. BioResources 15[2], 2310-2325. https://doi:10.15376/biores.15....
 
31.
Iždinský, J.; Reinprecht, L.; Vidholdová, Z. [2021]: Particleboards from Recycled Pallets. Forests 12, 1597. https://doi.org/10.3390/f12111....
 
32.
Jedlinski, M., Sowa, M. [2021]: The concept of the “Reverse Iceberg-RIB” in the application of account of total cost of ownership for a reusable wooden flat pallet in its operating phase. European Research Studies Journal 24[4], 199-210. https://www.um.edu.mt/library/....
 
33.
Karaçalı, Ö., & Taner Ulguel, A. [2014]: Finite Element Analysis of Pallet-Nail Materials Used in Pallet Joint Design for Material Handling Works. Acta Physica Polonica A 125[2], 183–185. doi:10.12693/aphyspola.125.183.
 
34.
Khan, M.H., Deviatkin, I., Havukainen, J. et al. [2021]: Environmental impacts of wooden, plastic, and wood-polymer composite pallet: a life cycle assessment approach. Int J Life Cycle Assess 26, 1607–1622. https://doi.org/10.1007/s11367....
 
35.
Kharrat, W.; Koubaa, A.; Khlif, M.; Bradai, C. [2019]: Intra-Ring Wood Density and Dynamic Modulus of Elasticity Profiles for Black Spruce and Jack Pine from X-Ray Densitometry and Ultrasonic Wave Velocity Measurement. Forests 10, 569. https://doi.org/10.3390/f10070....
 
36.
Kozakiewicz, P.; Jankowska, A.; Mamiński, M.; Marciszewska, K.; Ciurzycki, W.; Tulik, M. [2020]: The Wood of Scots Pine (Pinus sylvestris L.) from Post-Agricultural Lands Has Suitable Properties for the Timber Industry. Forests, 11, 1033. https://doi.org/10.3390/f11101....
 
37.
Krzosek, S. [1998a]. Wytrzymałościowe sortowanie tarcicy konstrukcyjnej, Lekkie Budownictwo Szkieletowe 4, 10–11.
 
38.
Krzosek, S. [1998b]: Badanie gęstości jako kryterium wytrzymałościowej jakości iglastej tarcicy konstrukcyjnej. Rozprawa doktorska Wydział Technologii Drewna SGGW, Warszawa 1998.
 
39.
Krzosek, S. [2009]: Wytrzymałościowe sortowanie polskiej, sosnowej tarcicy konstrukcyjnej różnymi metodami. Wydawnictwo SGGW, Warszawa.
 
40.
Krzysik F. [1974]: Nauka o drewnie. PWN, Warszawa.
 
41.
Kvočka, D.; Lešek, A.; Knez, F.; Ducman, V.; Panizza, M.; Tsoutis, C.; Bernardi, A. [2020]: Life Cycle Assessment of Prefabricated Geopolymeric Façade Cladding Panels Made from Large Fractions of Recycled Construction and Demolition Waste. Materials 13, 3931. https://doi.org/10.3390/ma1318....
 
42.
Lam, F., Barrett, J. D., and Nakajima, S. [2005]: Influence of knot area ratio on the bending strength of Canadian Douglas fir timber used in Japanese post and beam housing,” Journal of Wood Science 51[1], 18-25. DOI: 10.1007/s10086-003-0619-6.
 
43.
Landendorf G. [1983]: Holzvergütung. VEB Fachbuchverlag, Leipzig.
 
44.
Lin, W., Wang, J., and Sharma, B. [2011]: Development of an optimal three-dimensional visualization system for rough lumber edging and trimming in central Appalachia, Forest Products Journal 61[5], 401-410. DOI: 10.13073/0015-7473-61.5.401.
 
45.
Masis, J.; Horvath, L.; Böröcz, P. [2022]: The Effect of Forklift Type, Pallet Design, Entry Speed, and Top Load on the Horizontal Shock Impacts Exerted during the Interactions between Pallet and Forklift. Appl. Sci. 12, 7035. https://doi.org/10.3390/app121....
 
46.
McKeever, D. B., McCurdy, D. R., Kung, F. H., & Ewers, J. T. [1986]: Wood used in pallets manufactured in the United States, 1982. US Department of Agriculture, Forest Service, Forest Products Laboratory.
 
47.
Mielczarek, Z. [1997]: Budownictwo drewniane. Arkady. W-wa.
 
48.
Mirski, R., Wieruszewski, M., Trociński, A., Kawalerczyk, J., & Łabęda, K. [2021]: Elastic moduli of butt-end logs and the variable knots distribution in Scots pine from Western Poland. BioResources 16[1], 1842. DOI: 10.15376/biores.16.1.1842-1853.
 
49.
Mustefaga, E. C., Hillig, É., Tavares, E. L., Sozim, P. C. L., Rusch, F. [2019]: Caracterização físico-mecânica da madeira juvenil de Pinus. Physico-mechanical characterization of pine juvenile wood. Scientia Forestalis 47[123], 472-481. doi.org/10.18671/scifor.v47n123.09.
 
50.
Pajchrowski, G. Jabłoński, L., Szumiński, G. [2009]: Krajowa baza drewna tartacznego do produkcji drewna konstrukcyjnego spełniającego wymagania wynikające z Dyrektywy na wyroby budowlane (89/106/EEC). ETAP VII. Analiza kierunków rozwoju urządzeń do wytrzymałościowej klasyfikacji drewna konstrukcyjnego. Instytut Technologii Drewna, Zakład Badania i Zastosowania Drewna, Poznań.
 
51.
Patricio, M.Á., Maravall, D. [2003]: Automatic Visual Inspection of Wooden Pallets. In: Chung, P.W.H., Hinde, C., Ali, M. (eds) Developments in Applied Artificial Intelligence. IEA/AIE 2003. Lecture Notes in Computer Science 2718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-....
 
52.
PN-63/D-04117 Fizyczne i mechaniczne własności drewna ‒ Oznaczanie współczynnika sprężystości przy zginaniu statycznym, (Physical and mechanical properties of wood - Determination of the coefficient of elasticity under static bending).
 
53.
PN-66/D – 01000: Wady drewna, (Wood defects).
 
54.
PN-D-94021:2013-10: Tarcica konstrukcyjna iglasta sortowana metodami wytrzymałościowymi, (Coniferous structural lumber sorted using strength methods).
 
55.
Ponis, S.T.; Efthymiou, O.K. [2020]: Cloud and IoT Applications in Material Handling Automation and Intralogistics. Logistics 4, 22. https://doi.org/10.3390/logist....
 
56.
Roszyk, E., Mania, P., Iwańska, E., Kusiak, W., Broda, M. [2020]: Mechanical performance of Scots pine wood from northwestern Poland–A case study. BioResources 15[3], 6781-6794.
 
57.
Šilinskas, B.; Varnagirytė-Kabašinskienė, I.; Aleinikovas, M.; Beniušienė, L.; Aleinikovienė, J.; Škėma, M. [2020]: Scots Pine and Norway Spruce Wood Properties at Sites with Different Stand Densities. Forests 11, 587. https://doi.org/10.3390/f11050....
 
58.
Song, D. A [2021]: Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities. Logistics 5, 41. https://doi.org/10.3390/logist....
 
59.
Szczuka J., Żurowski J. [1999]: Materiałoznawstwo przemysłu drzewnego. Warszawa.
 
60.
Szukała, R., Szumiński, G. [2003]: Badanie podstawowych właściwości iglastej tarcicy konstrukcyjnej zgodnie z normami europejskimi. ITD, Poznań 2003.
 
61.
Tornese, F.; Gnoni, M.G.; Thorn, B.K.; Carrano, A.L.; Pazour, J.A. [2021]: Management and Logistics of Returnable Transport Items: A Review Analysis on the Pallet Supply Chain. Sustainability 13, 12747. https://doi.org/10.3390/su1322....
 
62.
Trevisani, A., Iaccheri, E., Fabbri, A., & Guarnieri, A. [2014]: Pallet standards in agri-food sector: a brief survey. Journal of Agricultural Engineering 45[2], 90. doi:10.4081/jae.2014.220.
 
63.
Vendl, T., Stejskal, V., Kadlec, J., & Aulicky, R. [2021]: New approach for evaluating the repellent activity of essential oils against storage pests using a miniaturized model of stored-commodity packaging and a wooden transport pallet. Industrial Crops and Products 172, 114024. doi:10.1016/j.indcrop.2021.114024.
 
64.
Vlkovský, M., Malíšek, J., & Kutil, R. [2021]: Influence of Shocks on Pallet Load and Cargo Securing. Transportation Research Procedia 55, 50-56. https://doi.org/10.1016/j.trpr....
 
65.
Waseem, A., Nawaz, A., Munir, N., Islam, B., & Noor, S. [2013]: Comparative analysis of different materials for pallet design using ANSYS. International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, 13[2], 26138002-6767.
 
66.
Wdowiak-Postulak A. [2021]: Basalt Fibre Reinforcement of Bent Heterogeneous Glued Laminated Beams. Materials;14[1]:51. https://doi.org/10.3390/ma1401....
 
67.
Wdowiak-Postulak A. [2022]: Ductility, load capacity and bending stiffness of Scandinavian pine beams from waste timber strengthened with jute fibres. Drewno Prace Naukowe, Doniesienia, Komunikaty = Wood Research Papers, Reports, Announcements 65. https://doi.org/10.12841/wood.....
 
68.
Wdowiak-Postulak A, Bahleda F, Prokop J. [2023]: An Experimental and Numerical Analysis of Glued Laminated Beams Strengthened by Pre-Stressed Basalt Fibre-Reinforced Polymer Bars. Materials;16:2776. https://doi.org/10.3390/ma1607....
 
69.
Wdowiak-Postulak A, Świt G, Dziedzic-Jagocka I. [2024]. Application of Composite Bars in Wooden, Full-Scale, Innovative Engineering Products—Experimental and Numerical Study. Materials 17, 730. https://doi.org/10.3390/ma1703....
 
70.
Wieruszewski, M.; Trociński, A.; Kawalerczyk, J.; Derkowski, A.; Mirski, R. [2022]: The Strength of Pine (Pinus sylvestris L.) Sawn Timber in Correlation with Selected Wood Defects. Materials 15, 3974. https://doi.org/10.3390/ma1511....
 
71.
Wright, S., Dahlen, J., Montes, C., and Eberhardt, T. L. [2019]: Quantifying knots by image analysis and modeling their effects on the mechanical properties of loblolly pine lumber, European Journal of Wood and Wood Products 77, 903-917. DOI:10.1007/s00107-019-01441-8.
 
72.
Zajac, P.; Dragasius, E.; Roik, T. [2021]: Energy Consumption When Transporting Pallet Loads Using a Forklift with an Anti Slip Pad Preventing Damage. Energies 14, 8423. https://doi.org/10.3390/en1424....
 
73.
ZHu, X., Toyota, H., Ito, D., & Doi, K. [2022]: Structural Design for Improving the Strength of Flat Wooden Pallets. In Journal of Physics: Conference Series 2287[1], 012043. https://doi.org/10.1088/1742-6....
 
eISSN:2956-9141
Journals System - logo
Scroll to top