ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The focus of the study was to address the issue of hydrogels based on carboxymethyl cellulose having poor gelation strengths when in contact with liquids. In order to enhance this characteristic, cellulose was added to the hydrogels, and their characteristics were examined. Unlike previous studies, cellulose was modified mechanically and chemically before its addition. The pulp was refined using a traditional PFI mill or a supermasscolloider as part of the mechanical modification process. The combination of H2O2 and ZnCl2 was also chosen for chemical modification of the pulp due to their synergistic effect, where ZnCl2 facilitates fiber swelling, and H2O2 enhances Zn²⁺ ions' reactivity, further promoting cellulose oxidation. By creating a cellulosic backbone with higher resistance properties, it is intended to prevent the cellulose-carboxymethyl cellulose complex from dispersing in water. Epichlorohydrin was utilized in different ratios to crosslink modified cellulose and carboxymethyl cellulose in the hydrogel-making process. Fourier transform infrared spectroscopy, Differential scanning calorimetry, and Scanning electron microscopy were used to examine the hydrogels' structural, thermal, and surface characteristics. The results showed that with the modified cellulose addition, the loss of swelling and water absorption properties of the hydrogel due to the increase in cellulose content can be minimized. The swelling capacity of the samples was significantly preserved by refining the cellulose using a PFI mill. However, refining using supermasscolloider did not give satisfactory results. In summary, the study showed that modified cellulose reinforcement may be used to produce hydrogels without significantly altering the swelling capacity of carboxymethyl cellulose-based hydrogels.
REFERENCES (40)
1.
Barbucci, R., Magnani, A., & Consumi, M. [2000]: Swelling Behavior of Carboxymethylcellulose Hydrogels in Relation to Cross-Linking, pH, and Charge Density. Macromolecules, 33, 7475-7480. DOI: 10.1021/ma0007029.
 
2.
Bock, C., Katz, A.K., Markham, A., & Glusker, J.P. [1999]: Manganese as a Replacement for Magnesium and Zinc: Functional Comparison of the Divalent Ions. Journal of the American Chemical Society, 121, 7360-7372. DOI: 10.1021/ja9906960.
 
3.
Buhus, G., Peptu, C., Popa, M.I., & Desbrières, J. [2009]: Controlled release of water soluble antibiotics by carboxymethylcellulose- And gelatin-based hydrogels crosslinked with epichlorohydrin. Cellulose Chemistry and Technology, 43, 141-151.
 
4.
Cabiac, A., Guillon, E., Chambon, F., Pinel, C., Rataboul, F., & Essayem, N. [2011]: Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A-general, 402, 1-10. DOI: 10.1016/j.apcata.2011.05.029.
 
5.
Cao, N., Xu, Q., Chen, C.S., Gong, C.S., & Chen, L.F. [1994]: Cellulose hydrolysis using zinc chloride as a solvent and catalyst. Applied Biochemistry and Biotechnology, 45-46, 521-530. DOI: 10.1007/BF02941827.
 
6.
Capanema, N.S., Mansur, A.A., de Jesus, A.C., Carvalho, S.M., de Oliveira, L.C., & Mansur, H.S. [2018]: Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International journal of biological macromolecules, 106, 1218-1234. DOI: 10.1016/j.ijbiomac.2017.08.124.
 
7.
Chang, C., Duan, B., Cai, J., & Zhang, L. [2010]: Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 46, 92-100. DOI: 10.1016/j.eurpolymj.2009.04.033.
 
8.
Chen, Y., Liu, Y., & Tan, H. [2008]: Preparation of macroporous cellulose-based superabsorbent polymer through the precipitation method. BioResources 3(1), 247-254. DOI: 10.15376/biores.3.1.247-254.
 
9.
Chen, Y., Wang, Y., Wan, J., & Ma, Y. [2010]: Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose, 17, 329-338. DOI: 10.1007/s10570-009-9368-z.
 
10.
Chen, Y., Yu, H., & Li, Y. [2020]: Highly Efficient and Superfast Cellulose Dissolution by Green Chloride Salts and Its Dissolution Mechanism. ACS Sustainable Chemistry & Engineering, 8(50), 18446-18454. DOI: 10.1021/acssuschemeng.0c05788.
 
11.
Choi, C. R., Kim, E. J., Choi, T. H., Han, J., & Kang, D. [2024]: Enhancing Human Cutaneous Wound Healing through Targeted Suppression of Large Conductance Ca2+-Activated K+ Channels. International Journal of Molecular Sciences, 25(2), 803. DOI: 10.3390/ijms25020803.
 
12.
Dai, H., Huang, Y.S., & Huang, H. [2018]: Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydrate polymers, 185, 1-11. DOI: 10.1016/j.carbpol.2017.12.073.
 
13.
Das, D., Prakash, P., Rout, P.K., & Bhaladhare, S. [2020]: Synthesis and Characterization of Superabsorbent Cellulose‐Based Hydrogel for Agriculture Application. Starch – Stärke, 73(1-2), 1900284. DOI: 10.1002/star.201900284.
 
14.
Fan, M., Dai, D., & Huang, B. [2012]: Fourier Transform Infrared Spectroscopy for Natural Fibres. In: Salih, M. S. (ed) Fourier transform-materials analysis. InTech, Rijeka, Crotia, pp 45-68. DOI: 10.5772/35482.
 
15.
Fekete, T., Borsa, J., Takács, E., & Wojnárovits, L. [2014]: Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking. Cellulose, 21, 4157-4165. DOI: 10.1007/s10570-014-0445-6.
 
16.
Feng, S., Liu, F., Guo, Y., Ye, M., He, J., Zhou, H., Liu, L., Cai, L., Zhang, Y., & Li, R. [2021]: Exploring the role of chitosan in affecting the adhesive, rheological and antimicrobial properties of carboxymethyl cellulose composite hydrogels. International Journal of Biological Macromolecules, 190, 554-563. DOI: 10.1016/j.ijbiomac.2021.08.217.
 
17.
Godiya, C.B., Cheng, X., Li, D., Chen, Z., & Lu, X. [2019]: Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. Journal of hazardous materials, 364, 28-38. DOI: 10.1016/j.jhazmat.2018.09.076.
 
18.
Gümüşkaya, E., Usta, M.C., & Kirci, H. [2003]: The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polymer Degradation and Stability, 81, 559-564. DOI: 10.1016/S0141-3910(03)00157-5.
 
19.
He, X., Wu, S., Fu, D., & Ni, J. [2009]: Preparation of sodium carboxymethyl cellulose from paper sludge. Journal of Chemical Technology & Biotechnology, 84, 427-434. DOI: 10.1002/jctb.2057.
 
20.
Kumar, B., Sauraj, & Negi, Y.S. [2019]: To investigate the effect of ester-linkage on the properties of polyvinyl alcohol/carboxymethyl cellulose based hydrogel. Materials Letters. 252, 308-312. DOI: 10.1016/J.MATLET.2019.05.118.
 
21.
Laftah, W.A., Hashim, S., & Ibrahim, A.N. [2011]: Polymer Hydrogels: A Review. Polymer-Plastics Technology and Engineering, 50(14), 1475 - 1486. DOI: 10.1080/03602559.2011.593082.
 
22.
Laine, C., Wang, X., Tenkanen, M., & Varhimo, A. [2004]: Changes in the fiber wall during refining of bleached pine kraft pulp. Holzforschung 58(3), 233-240. DOI: 10.1515/HF.2004.036.
 
23.
Laitinen, O., & Niinimäki, J. [2014]: Fractional study of the microfibrillated cellulose. Tappi Journal 13(7), 49-55. DOI: 10.32964/tj13.7.49.
 
24.
Li, Q., Ma, Z., Yue, Q., Gao, B., Li, W., & Xu, X. [2012]: Synthesis, characterization and swelling behavior of superabsorbent wheat straw graft copolymers. Bioresource technology, 118, 204-9. DOI: 10.1016/j.biortech.2012.03.028.
 
25.
Li, J., Fang, L., Tait, W.R., Sun, L., Zhao, L., & Qian, L. [2017]: Preparation of conductive composite hydrogels from carboxymethyl cellulose and polyaniline with a nontoxic crosslinking agent. RSC Advances, 7(86), 54823-54828. DOI: 10.1039/C7RA10788A.
 
26.
Liebert, T.F. [2010]: Cellulose Solvents - Remarkable History, Bright Future. In: Liebert, T.F., Heinze, T.J., Edge, K.J. (eds) Cellulose Solvents: For Analysis, Shaping and Chemical Modification, 1st edn. AS Publishing, Washington DC, USA, pp 3-54. DOI: 10.1021/bk-2010-1033.ch001.
 
27.
Liu, P., Zhai, M., Li, J., Peng, J., & Wu, J. [2002]: Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiation Physics and Chemistry, 63(3-6), 525-528. DOI: 10.1016/S0969-806X(01)00649-1.
 
28.
Milanovic, J.Z., Kostić, M.M., & Škundrić, P. [2012]: Structure and properties of tempo-oxidized cotton fibers. Chemical Industry & Chemical Engineering Quarterly, 18(3), 473-481. DOI: 10.2298/CICEQ120114024M.
 
29.
Eldin, M.S., Omer, A.M., Soliman, E.A., & Hassan, E.A. [2013]: Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization. Desalination and Water Treatment, 51(16-18), 3196-3206. DOI: 10.1080/19443994.2012.751156.
 
30.
Poletto, M., Ornaghi Júnior, H.L., & Zattera, A.J. [2014]: Native Cellulose: Structure, Characterization and Thermal Properties. Materials, 7(9), 6105 - 6119. DOI: 10.3390/ma7096105.
 
31.
Praskalo, J., Kostić, M.M., Potthast, A., Popov, G.V., Pejić, B., & Škundrić, P. [2009]: Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers. Carbohydrate Polymers, 77(4), 791-798. DOI:.1016/j.carbpol.2009.02.028.
 
32.
Ren, H., Gao, Z., Wu, D., Jiang, J., Sun, Y., & Luo, C. [2016]: Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydrate polymers, 137, 402-409. DOI: 10.1016/j.carbpol.2015.11.002.
 
33.
Su, C., Liu, J., Yang, Z., Jiang, L., Liu, X., & Shao, W. [2020]: UV-mediated synthesis of carboxymethyl cellulose/poly-N-isopropylacrylamide composite hydrogels with triple stimuli-responsive swelling performances. International journal of biological macromolecules. 161, 1140-1148. DOI: 10.1016/j.ijbiomac.2020.06.094.
 
34.
Suo, A., Qian, J., Yao, Y., & Zhang, W. [2007]: Synthesis and properties of carboxymethyl cellulose‐graft‐poly(acrylic acid‐co‐acrylamide) as a novel cellulose‐based superabsorbent. Journal of Applied Polymer Science, 103(3), 1382-1388. DOI: 10.1002/app.23948.
 
35.
Uyanga, K.A., & Daoud, W.A. [2021]: Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure. Cellulose, 28(9), 5493 - 5512. DOI: 10.1016/j.ijbiomac.2021.08.217.
 
36.
Wang, Y., Shi, X., Wang, W., & Wang, A. [2013]: Synthesis, characterization, and swelling behaviors of a pH-responsive CMC-g-poly(AA-co-AMPS) superabsorbent hydrogel. Turkish Journal of Chemistry, 37(1), 149-159. DOI: 10.3906/kim-1204-52.
 
37.
Wang, Z., Ning, A., Xie, P., Gao, G., Xie, L., Li, X., & Song, A. [2017]: Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydrate polymers, 157, 48-56. DOI: 10.1016/j.carbpol.2016.09.070.
 
38.
Wang, L., & Wang, M. [2016]: Removal of Heavy Metal Ions by Poly(vinyl alcohol) and Carboxymethyl Cellulose Composite Hydrogels Prepared by a Freeze–Thaw Method. ACS Sustainable Chemistry & Engineering, 4(5), 2830-2837. DOI: 10.1021/acssuschemeng.6b00336.
 
39.
Xu, R., Gao, X., Chen, Y., Peng, C., Zhang, Z., Wang, C., Sun, H., Chen, X., & Cui, L. [2023]: Research advances of the electrolytes for rechargeable magnesium ion batteries. Materials Today Physics, 101186. DOI: 10.1016/j.mtphys.2023.101186.
 
40.
Zohuriaan, M.J.M., & Kabiri, K. [2008]: Superabsorbent Polymer Materials: A Review. Iranian Polymer Journal, 17(6),451-477.
 
eISSN:2956-9141
Journals System - logo
Scroll to top