ORIGINAL PAPER
Test of the Mechanical and Acoustic Parameters of the Electric Guitar Body
More details
Hide details
1
Faculty of Engineering Sciences, University of Applied Science in Nowy Sacz,, Poland
2
Faculty of Health Sciences, University of Applied Science in Nowy Sacz,, Poland
3
Faculty of Mechanical Engineering and Robotics, AGH University of Krakow,, Poland
Submission date: 2024-04-14
Final revision date: 2024-09-19
Acceptance date: 2024-10-21
Online publication date: 2024-12-09
Corresponding author
Łukasz Bojko
Faculty of Mechanical Engineering and Robotics, AGH University of Krakow,, Al. Mickiewicza 30, 30-059, Kraków, Poland
Drewno 2024;67(214)
KEYWORDS
TOPICS
ABSTRACT
The aim of the work is a mechanical and acoustic analysis of electric guitar bodies. Samples of ash, oak, walnut, lime tree, and fir were selected for mechanical tests - with constant moisture content, made of latewood, and free from defects. The tests were carried out on the Brinell device to determine the hardness of the wood and on the MCT3 machine from Anton Paar to determine the microhardness and elastic moduli. The elastic properties of wood are determined by its anisotropy and have different values depending on the direction of force in relation to the fibers. The wood showed the greatest stiffness along the fibers and, in the case of forces acting perpendicular to the fibers, the stiffness was much lower. Sound transmission tests of selected acoustic parameters were carried out. They involved measuring and analyzing the frequency and damping of vibrations of guitar bodies using a special vibration sensor. The acoustic parameters of a guitar body experimentally made from walnut were compared with those of a mass-produced Ibanez guitar made of ash wood. Each species of wood has its own characteristic blend of physical properties, such as grain structure, density, weight, and strength, which influence the final tonal power of the guitar. The test results of various wood species indicate significant strength and acoustic-resonance differences, which determine the absorption of vibrations, sound amplification, and sound transmission. The use of specific wood for a guitar body is related to the musician's artistic vision and the purpose of the instrument.
REFERENCES (38)
1.
Ahvenainen, P. (2019). Anatomy and mechanical properties of woods used in electric guitars. IAWA journal. 40(1), 106-S6. DOI: 10.1163/22941932-40190218.
2.
Aşikuzun, E. & İşleyen, Ü. K. (2019). Determination of Mechanical Properties of Aged Wood Material Using Vickers Microhardness Test. Kastamonu University Journal of Forestry Faculty. 19(1), 106-115. DOI: 10.17475/kastorman.543542.
3.
Aşikuzun, E. & Kaymakci, A. (2018). Investigation of mechanical behavior of wood polymer nanocomposites (WPNs) samples using static vickers microhardness tester. Kastamonu University Journal of Forestry Faculty. 18(1), 62-74. DOI: 10.17475/kastorman.409185.
4.
Avram, A., Lunguleasa, A., Spirchez, C. & Ionescu, C.S. (2023). Differences and Similarities between the Wood of Three Low-Density and Homogenous Species: Linden, Balsa, and Paulownia. Applied Sciences, 13(18), 10209. DOI:10.3390/app131810209.
5.
Bennett, B.C. (2016). The sound of trees: wood selection in guitars and other chordophones. Economic Botany. 70, 49-63. DOI: 10.1007/s12231-016-9336-0.
6.
Bilko, P., Skoratko, A., Rutkiewicz, A. & Małyszko, L. (2021). Determination of the shear modulus of pine wood with the arcan test and digital image correlation. Materials. 14(2), 468. DOI: 10.3390/ma14020468.
7.
Bojko, Ł., Ryniewicz, A.M., Bogucki, R. & Pałka, P. (2015). Microstructural and strength studies Co-Cr-Mo alloy on prosthetic reconstructions in casting technology and laser sintering. Przegląd elektrotechniczny. 91(5), 29-32. DOI:10.15199/48.2015.05.08.
8.
Bojko, Ł., Ryniewicz, A.M. & Ryniewicz, W. (2022). Strength Tests of Alloys for Fixed Structures in Dental Prosthetics. Materials. 15(10), 3497. DOI: 10.3390/ma15103497.
9.
Carcagno, S., Bucknall, R., Woodhouse, J., Fritz, C. & Plack, C.J. (2018). Effect of back wood choice on the perceived quality of steel-string acoustic guitars. The Journal of the Acoustical Society of America. 144(6), 3533-3547. DOI: 10.1121/1.5084735.
10.
Dackermann, U., Elsener, R., Li, J. & Crews, K. (2016). A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood. Construction and Building Materials. 102 (2), 963-976. DOI: 10.1016/j.conbuildmat.2015.07.195.
11.
Fleischer, H.M. (2005). Vibration of an electric bass guitar. Acta Acustica United with Acustica. 91, 247–260.
12.
Fleischer, H. & Zwicker, T. (1998). Mechanical vibrations of electrical guitars. Acta Acustica United with Acustica. 84, 758–765.
13.
Gašparík, M., Gaff, M., Šafaříková, L., Vallejo, C. R. & Svoboda, T. (2016). Impact bending strength and Brinell hardness of densified hardwoods. BioResources, 11(4), 8638-8652. DOI: 10.15376/biores.11.4.8638-8652.
14.
Güntekin, E. & Aydın, T.Y. (2016). Determination of elastic constants for anatolian black pine wood using ultrasound. In Proceedings of the World Conference on Timber Engineering, August 2016 (pp. 22-25), Vienna, Austria.
15.
Henriques, J., Xavier, J. & Andrade-Campos, A. (2022). Identification of orthotropic elastic properties of wood by a synthetic image approach based on digital image correlation. Materials. 15(2), 625. DOI: 10.3390/ma15020625.
16.
Jasiński, J., Oleś, S., Tokarczyk, D. & Pluta, M. (2021). On the Audibility of Electric Guitar Tonewood. Archives of Acoustics. 46(4), 571-578. DOI: 10.24425/aoa.2021.138150.
17.
Jiang, J., Bachtiar, E.V., Lu, J. & Niemz, P. (2017). Moisture-dependent orthotropic elasticity and strength properties of Chinese fir wood. European Journal of Wood and Wood Products. 75, 927-938. DOI: 10.1007/s00107-017-1166-y.
18.
Jiang, J., Bachtiar, E.V., Lu, J. & Niemz, P. (2018). Comparison of moisture-dependent orthotropic Young’s moduli of Chinese fir wood determined by ultrasonic wave method and static compression or tension tests. European Journal of Wood and Wood Products. 76, 953-964. DOI: 10.1007/s00107-017-1269-5.
19.
Lachowicz, H., Wojtan, R., Seleznovs, A., Lāceklis-Bertmanis, J., Kaķītis, A. & Giedrowicz, A.K. (2021). Multivariate Analysis of the Brinell Hardness of Silver Birch (Betula pendula Roth.) Wood in Poland. Forests. 12(10), 1308. DOI: 10.3390/f12101308.
20.
Le Carrou, J.L., Chornette, B. & Pate, A. (2014). Influence of the intrumentalist on the electric guitar vibratory behaviour. In Proceedings of the Intenational Symposium on Music Acoustics, 7–12 July 2014 (pp. 413–417). Le Mans, France.
21.
Lykidis, C., Nikolakakos, M., Sakellariou, E. & Birbilis, D. (2016). Assessment of a modification to the Brinell method for determining solid wood hardness. Materials and structures, 49, 961-967. DOI: 10.1617/s11527-015-0551-4.
22.
Malaga-Toboła, U., Łapka, M., Tabor, S., Niesłony, A. & Findura, P. (2019). Influence of wood anisotropy on its mechanical properties in relation to the scale effect. International Agrophysics. 33(3), 337-345. DOI: 10.31545/intagr/110808.
23.
Miyoshi, Y., Kojiro, K. & Furuta, Y. (2018). Effects of density and anatomical feature on mechanical properties of various wood species in lateral tension. Journal of Wood Science. 64(5), 509-514. DOI: 10.1007/s10086-018-1730-z.
24.
Navarret, B. Le Carrou, J.L. Sedes, A. Ollivier, S. & Fujiso, Y. (2009). Etude perceptive et dynamique de la guitare electrique. In Proceedings of the Conference on Interdisciplinary Musicology, 26–29 October 2009 (pp. 126–128). Paris, France.
25.
Pate, A., Le Carrou, J.L. & Fabre, B. (2015). Modal parameter variability in industrial electric guitar making: Manufacturing process, wood variability, and lutherie decisions. Applied Acoustics. 96, 118–131. DOI: 10.1016/j.apacoust.2015.03.023.
26.
Paté, A., Carrou, J.L.L., Navarret, B., Dubois, D. & Fabre, B. (2015). Influence of the electric guitar's fingerboard wood on guitarists' perception. Acta Acustica united with Acustica. 101(2), 347-359. DOI: 10.3813/AAA.918831.
27.
Pate, A., Le Carrou, J.L., Teissier, F. & Fabre, B. (2015). Evolution of the modal behaviour of nominally identical electric guitars during the making process. Acta Acustica United with Acustica. 2015, 101, 567–580. DOI: 10.3813/AAA.918853.
28.
Pelit, H., Sönmez, A. & Budakçı, M. (2015). Effects of thermomechanical densification and heat treatment on density and Brinell hardness of Scots pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.). BioResources, 10(2), 3097-3111. DOI: 15376/biores.10.2.3097-3111.
29.
Ray, T., Kaljun, J. & Straže, A. (2021). Comparison of the Vibration Damping of the Wood Species Used for the Body of an Electric Guitar on the Vibration Response of Open-Strings. Materials. 14(18), 5281. DOI: 10.3390/ma14185281.
30.
Rossing, T.D. (2010). The Science of String Instruments. Springer: New York, NY, USA.
31.
Ryniewicz, A.M., Bojko, Ł. & Ryniewicz, W.I. (2016). Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions. Acta of Bioengineering and Biomechanics. 18(1), 121-127. DOI:.
33.
Ryniewicz, A.M., Machniewicz, T., Ryniewicz, W. & Bojko, Ł. (2018). Strength tests of the polymers used in dental prosthetics. Archive of Mechanical Engineering. 65(4), 515-525. DOI: 10.24425/ame.2018.125440.
34.
Shmulsky, R. & Jones, P. D. (2019). Forest products and wood science: an introduction. John Wiley & Sons Ltd, DOI:10.1002/9781119426400.
35.
Xolboboyevich, X.J. (2023). Types and properties of wood used in carpentry. International Multidisciplinary Journal for Research & Development, 10(12), 854-857.
36.
Yilmaz Aydin, T. & Ozveren, A. (2019). Effects of moisture content on elastic constants of fir wood. European Journal of Wood and Wood Products. 77(1), 63-70. DOI: 10.1007/s00107-018-1363-3.
37.
Zoric, A. & Kaljun, J. (2018). The influence of the acoustic properties of wood for the production of electric solid body guitars. DAAAM International Scientific Book. 18, 195-210. DOI: 10.2507/daaam.scibook.2018.18.
38.
Zoriˇc, A., Kaljun, J., Žveplan, E. & Straže, A. (2019). Selection of wood based on acoustic properties for the solid body of electric guitar. Archives of Acoustics. 44, 51–58. DOI: 10.24425/aoa.2019.126351.