The Influence of Selected Physico-Chemical Pretreatment Methods on Chemical Composition and Enzymatic Hydrolysis Yield of Poplar Wood and Corn Stover
 
More details
Hide details
 
Publication date: 2023-06-30
 
 
Drewno 2023;66(211):1-13
 
REFERENCES (55)
1.
Adney B., Baker J. [1996]: Measurement of cellulase activities (NREL/TP-510-42628). National Renewable Energy Laboratory, Golden, CO.
 
2.
Akus-Szylberg F., Antczak A., Bytner O., Radomski A., Krajewski K., Zawadzki J. [2018]: The effect of pre-treatment of corn stover with liquid hot water on its chemical composition and enzymatic hydrolysis. Przemysł Chemiczny 97[11]: 1866-1869. DOI: 10.15199/62.2018.11.10.
 
3.
Akus-Szylberg F., Antczak A., Zawadzki J. [2020a]: Hydrothermal pretreatment of poplar (Populus trichocarpa) wood and its impact on chemical composition and enzymatic hydrolysis yield. Drewno 63[206]: 5-18. DOI:10.12841/wood.1644-3985.367.09.
 
4.
Akus-Szylberg F., Antczak A., Zawadzki J. [2021a]: Effects of soaking aqueous ammonia pretreatment on chemical composition and enzymatic hydrolysis of corn stover. Annals of Warsaw University of Life Sciences-SGGW, Forestry and Wood Technology 115: 29-36. DOI: 10.5604/01.3001.0015.3633.
 
5.
Akus-Szylberg F., Antczak A., Zawadzki J. [2021b]: Effects of soaking aqueous ammonia pretreatment on selected properties and enzymatic hydrolysis of poplar (Populus trichocarpa) wood. Bioresources 16[3]: 5618-5627. DOI: 10.15376/biores.16.3.5618-5627.
 
6.
Akus-Szylberg F., Szadkowski J., Antczak A., Zawadzki J. [2020b]: Changes in poplar (Populus trichocarpa) wood porous structure after liquid hot water (LHW) pretreatment. Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology 112: 71-78. DOI: 10.5604/01.3001.0014.8861.
 
7.
Alvira P., Tomas-Pejo E., Ballesteros M., Negro M.J. [2010]: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review.
 
8.
Bioresource Technology 101: 4851-4861. DOI: 10.1016/j.biortech.2009.11.093.
 
9.
Antczak A., Marchwicka M., Szadkowski J., Drożdżek M., Gawron J., Radomski A., Zawadzki J. [2018]: Sugars yield obtained after acid and enzymatic hydrolysis of fast-growing poplar wood species. BioResources 13[4]: 8629-8645. DOI: 10.15376/biores.13.4.8629-8645.
 
10.
Antczak A., Szadkowski J., Szadkowska D., Zawadzki J. [2022]: Assessment of the effectiveness of liquid hot water and steam explosion pretreatments of fast-growing poplar (Populus trichocarpa) wood. Wood Science and Technology 56: 87-109. DOI: 10.1007/s00226-021-01350-1.
 
11.
Antczak A., Świerkosz R., Szeniawski M., Marchwicka M., Akus-Szylberg F., Przybysz P., Zawadzki J. [2019]: The comparison of acid and enzymatic hydrolysis of pulp.
 
12.
obtained from poplar wood (Populus sp.) by the Kraft method. Drewno 62[203]: 53-66. DOI: 10.12841/wood.1644-3985.D07.
 
13.
Antczak A., Ziętek K., Marchwicka M., Tylko B., Gawkowski A., Gawron J., Drożdżek M., Zawadzki J. [2016]: The sugars isolated from fast-growing poplar biomass (Populus sp.) as a raw material for production of bioethanol. Przemysł Chemiczny 95[9]: 1770-1773. DOI: 10.15199/62.2016.9.23.
 
14.
Baruah J., Nath B.K., Sharma R., Kumar S., Deka R.C., Baruah D.C., Kalita E. [2018]: Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Frontiers in Energy Research 6: 141. DOI: 10.3389/FENRG.2018.00141.
 
15.
Bodîrlău R., Teacă C. A., Spiridon I. [2008]: Chemical modification of beech wood: effect on thermal stability. BioResources 3 [3]: 789-800.
 
16.
Cao G., Ren N., Wang A., Lee D.J., Guo W., Liu B., Yujie F., Zhao Q. [2009]: Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy 34: 7182-7188. DOI: 10.1016/j.ijhydene.2009.07.009.
 
17.
Cardona E., Rios J., Peña J., Rios L. [2014]: Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118: 41-47. DOI: 10.1016/j.fuel.2013.10.055.
 
18.
Dąbkowska K., Chmielewska I., Pilarek M., Szewczyk K. W. [2012]: Wpływ metody wstępnej obróbki surowca lignocelulozowego na efektywność hydrolizy enzymatycznej. Inżynieria i Aparatura Chemiczna 51[4]: 112-114.
 
19.
Dąbkowska-Susfał K. [2020]: Efficiency of Corn and Poplar Biomass Saccharification after Pretreatment with Potassium Hydroxide. Ecological Chemistry and Engineering 27: 41-53. DOI: 10.2478/eces-2020-0002.
 
20.
El-Naggar N.E.A., Deraz S., Khalil A. [2014]: Bioethanol Production from Lignocellulosic Feedstocks Based on Enzymatic Hydrolysis: Current Status and Recent Developments. Biotechnology 13: 1-21. DOI: 10.3923/BIOTECH.2014.1.21.
 
21.
Fehér A., Fehér C., Rozbach M., Barta Z. [2017]: Combined Approaches to Xylose Production from Corn Stover by Dilute Acid Hydrolysis. Chemical and Biochemical Engineering Quarterly 31[1]: 77-87. DOI: 10.15255/CABEQ.2016.913.
 
22.
Fengel D., Wegener G. [2003]: Wood. Chemistry, ultrastructure, reactions. VK, Remagen.
 
23.
Gawron J., Antczak A., Borysiak S., Zawadzki J., Kupczyk A. [2014]: The study of glucose and xylose content by acid hydrolysis of ash wood (Fraxinus excelsior L.) after thermal modification in nitrogen by HPLC method. BioResources 9: 3197-3210.
 
24.
Imman S., Laosiripojana N., Champreda V. [2018]: Effects of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of corncobs. Applied Biochemistry and Biotechnology 184: 432-443. DOI:10.1007/s12010-017-2541-1.
 
25.
Janga K.K., Hägg M-B., Moe S.T. [2012]: Influence of acid concentration, temperature, and time on decrystallization in two-stage concentrated sulfuric acid hydrolysis of pinewood and aspen wood: a statistical approach. BioResources 7[1]: 391-411.
 
26.
Jönsson L.J., Alriksson B., Nilvebrant N.O., [2013]: Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels 61[6]: 1-10. DOI: 10.1186/1754-6834-6-16.
 
27.
Kačik F., Solár R. [1999]: Analiticka chemia dreva. TU, Zwoleń.
 
28.
Kratky L., Jirout T. [2011]: Biomass size reduction machines for enhancing biogas production. Chemical Engineering and Technology 34: 391-399. DOI: 10.1002/ceat.201000357.
 
29.
Kumar P., Marrett D.M., Delwiche M.J., Stroeve P. [2009]: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research 48[8]: 3713-3729. DOI: 10.1021/ie801542g.
 
30.
Lee Y.Y., Iyer P., Torget R.W. [1999]: Dilute-acid hydrolysis of lignocellulosic biomass. Advanced in Biochemical Engineering/Biotechnology 63: 94-115. DOI: 10.1007/3-540-49194-5_5.
 
31.
Li X., Lu J., Zhao J., Qu Y. [2014]: Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One 9: e95455. DOI: 10.1371/journal.pone.0095455.
 
32.
Lu X., Yamauchi K., Phaiboonsilpa N., Saka S. [2009]: Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. Journal of Wood Science 55[5]: 367-375. DOI: 10.1007/s10086-009-1040-6.
 
33.
Michelin M., Teixeira J.A. [2016]: Liquid hot water pretreatment of multifeedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresource Technology 216: 862-869. DOI: 10.1016/j.biortech.2016.06.018.
 
34.
Mosier N., Wyman C.E., Dale B.D., Elander R.T., Lee Y.Y., Holtzapple M., Ladisch C.M. [2005]: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96: 673-686. DOI: 10.1016/j.biortech.2004.06.025.
 
35.
Nlewem K.C., Thrash M.E. [2010]: Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresource Technology 101[14]: 5426-5430. DOI: 10.1016/j.biortech.2010.02.031.
 
36.
Prosiński S. [1984]: Wood Chemistry. State Agricultural and Forest Publishing House, Warsaw.
 
37.
Seifert K. [1960]: Zur frage der cellulose-schnellbestimmung nach der acetylaceton-methode. Das Papier 14[3]: 104-106.
 
38.
Shi Y., Yokoyama T., Akiyama T., Yashiro M., Matsumoto Y. [2012]: Degradation kinetics of monosaccharides in hydrochloric, sulfuric and sulfurous acid. BioResources 7 [3]: 4085-4097.
 
39.
Shi F., Wang Y., Davaritouchaee M., Yao Y., Kang K. [2020]: Directional structure modification of poplar biomass-inspired high efficacy of enzymatic hydrolysis by sequential dilute acid−alkali treatment. ACS Omega 5[38]: 24780-24789. DOI: 10.1021/acsomega.0c03419.
 
40.
Siripong P., Duangporn P., Takata E., Tsutsumi Y. [2016]: Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis. Bioresource Technology 203: 303-308. DOI: 10.1016/j.biortech.2015.12.037.
 
41.
Sluiter A., Ruiz R., Scarlata C., Sluiter J., Templeton D. [2008]: Determination of extractives in biomass (NREL/TP-510-42619). National Renewable Energy Laboratory, Golden, CO.
 
42.
Sun Y., Yang G., Jia ZH., Wen Ch., Zhang L. [2014]: Acid hydrolysis of corn stover using hydrochloric acid: kinetic modelling and statistical optimization. Chemical Industry and Chemical Engineering Quarterly 20[4]: 531-539. DOI: 10.2298/CICEQ130911035S.
 
43.
Szadkowski J. [2019]: Changes of porous structure and chemical composition of poplar wood (Populus sp.) after physicochemical treatment. Praca doktorska, Szkoła Główna Gospodarstwa Wiejskiego, Warsaw.
 
44.
Tomás-Pejó E., Alvira P., Ballesteros M., Negro M.J. [2011]: Pretreatment technologies for lignocellulose-to-bioethanol conversion, Elsevier Inc., Amsterdam.
 
45.
Trzcinski A.P., Stuckey D.C. [2015]: Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions. Bioresource Technology 185: 441-444. DOI: 10.1016/j.biortech.2015.03.016.
 
46.
Uçar G. [1990]: Pretreatment of poplar by acid and alkali for enzymatic hydrolysis. Wood Science and Technology 24: 171-180. DOI: 10.1007/BF00229052.
 
47.
Qiao H., Cui J., Ouyang S., Shi J., Ouyang J. [2019]: Comparison of Dilute Organic Acid Pretreatment and a Comprehensive Exploration of Citric Acid Pretreatment on Corn Cob. Journal of Renewable Materials 7 [11]: 1197-1207. DOI: 10.32604/jrm.2019.07735.
 
48.
Viell J., Inouye H., Szekely N.K., Frielinghaus H., Marks C., Wang Y., Anders N., Spiess A.C., Makowski L. [2016]: Multi‑scale processes of beechwood disintegration and pretreatment with 1‑ethyl‑3‑methylimidazoliumacetate/water mixtures. Biotechnology for Biofuels 9:7. DOI: 10.1186/s13068-015-0422-9.
 
49.
Yang F., Afzal W., Cheng K., Liu N., Pauly M., Bell A.T., Liu Z., Prausnitz J.M. [2015]: Nitric-acid hydrolysis of Miscanthus giganteus to sugars fermented to bioethanol. Biotechnology and Bioprocess Engineering 20: 304-314. DOI: 10.1007/s12257-014-0658-4.
 
50.
Wang W., Wang X., Zhang Y., Yu Q., Tan X., Zhuang X., Yuan Z. [2020]: Effect of sodium hydroxide pretreatment on physicochemical changes and enzymatic hydrolysis of herbaceous and woody lignocelluloses. Industrial Crops and Products 145: 112145. DOI: 10.1016/J.INDCROP.2020.112145.
 
51.
Wilk M., Krzywonos M. [2015]: Methods for pretreatment of lignocellulose raw materials in second-generation bioethanol production. Przemysł Chemiczny 94 [4]: 599-604. DOI: 10.15199/62.2015.4.20.
 
52.
Wise L.E., Murphy M., D'Addieco A.A. [1946]: Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122: 35-43.
 
53.
Woiciechowski A.L., Neto C.J.D., Vandenberghe L.P.S., Neto D.P.C., Novak- Sydney A.C., Letti L.A.J., Karp S.G., Zevallos-Torres L.A., Soccol C.R. [2020]: Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology 304: 122848. DOI: 10.1016/J.BIORTECH.2020.122848.
 
54.
Zawadzki J., Radomski A., Antczak A., Kupczyk A. [2016]: Nowoczesne aspekty badawcze związane z otrzymywaniem bioetanolu z biomasy lignocelulozowej (Modern research aspects of obtaining bioethanol from lignocellulosic biomass). In: Karpiński S. (ed.), Wyniki wybranych badań przeprowadzonych w ramach projektu WOODTECH (Results of selected studies carried out within WOODTECH project). Oficyna Wydawniczo-Poligraficzna ADAM, Warszawa.
 
55.
Zheng Q., Zhou T., Wang Y., Cao X., Wu S., Zhao M., Wang H., Xu M., Zheng B., Zheng J., Guan X. [2018]: Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Scientific Reports 81 [8]: 1-9. DOI:10.1038/s41598-018-19517-5.
 
eISSN:2956-9141
Journals System - logo
Scroll to top