ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
In response to global efforts towards sustainable development, an increasing number of Polish companies are focussing on sustainable construction. The quest to reduce the negative impact of economic activities on the natural environment is gaining popularity in the business sector. The aim of this publication is to analyse how timber construction – one of the sectors of sustainable construction –, contributes to the achievement of Sustainable Development Goals, with a special focus on the business sector in Poland. The research methods used include: (i) quantitative methods, presenting data on timber construction in Poland, and (ii) qualitative methods, including desk research and the analysis of three timber buildings with different functions - residential, public, and service - to assess the potential for such construction by Polish companies. The analysis shows that between 2018 and 2022, the number of new wooden buildings will increase by 52.18%. However, the share of wooden structures in the Polish residential construction market will remain small, accounting for 0.62% of all projects in 2022, making it the third most popular type of residential investment. The estimated value of the timber construction market in Poland is growing every year, reaching 3.5 billion PLN in 2022. A key factor in the further development of the sector is access to affordable wood materials, which may be limited in the future. In the context of EU regulations, the construction industry, especially those using wood, is gaining in importance and represents an important, though not yet fully exploited, potential for Polish companies.
REFERENCES (69)
1.
Akkemik, Ü., Köse, N., Wazny, T., Kızıltan, Z., Öncü, Ö. E., & Martin, J. P. (2019). Dating and dendroprovenancing of the timbers used in Yenikapı historical jetty (İstanbul, Turkey). Dendrochronologia, 57, 125628.
 
2.
Aseeva, R., Serkov, B., & Sivenkov, A. (2014). Fire Protection of Timber Building Structures and Constructions. Fire Behavior and Fire Protection in Timber Buildings, Springer Series in Wood Science (pp. 199–226). Dordrecht: Springer Netherlands. Retrieved November 19, 2023, from https://link.springer.com/10.1....
 
3.
Asif, M. (2009). Sustainability of timber, wood and bamboo in construction. Sustainability of Construction Materials (pp. 31–54). Elsevier. Retrieved December 2, 2022, from https://linkinghub.elsevier.co....
 
4.
Bidzińska, G., Leszczyszyn, E., & Augustyniak, D. (2020). Wooden construction as a driver of housing development in Poland. Poznań: Sieć Badawcza Łukasiewicz - Instytut Technologii Drewna.
 
5.
Brodny, J., & Tutak, M. (2020). Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources. Energies, 13(4), 913.
 
6.
Buentgen, U., & Et Al., E. Al. (2006). 700 years of settlement and building history in the Loetschental, Switzerland. Erdkunde, 2(60), 96–112.
 
7.
Büntgen, U., Kyncl, T., Ginzler, C., Jacks, D. S., Esper, J., Tegel, W., Heussner, K.-U., et al. (2013). Filling the Eastern European gap in millennium-long temperature reconstructions. Proceedings of the National Academy of Sciences, 110(5), 1773–1778.
 
8.
Dejmal, M., Lisá, L., Fišáková Nývltová, M., Bajer, A., Petr, L., Kočár, P., Kočárová, R., et al. (2014). Medieval Horse Stable; The Results of Multi Proxy Interdisciplinary Research. (T. Brown, Ed.)PLoS ONE, 9(3), e89273.
 
9.
European Commission. (2022). Climate-smart use of wood in the construction sector to support the New European Bauhaus. Retrieved from https://cordis.europa.eu/progr....
 
10.
European Economic and Social Committee. (2023). Wood construction for reducing CO2 emissions in the building sector. Retrieved from https://op.europa.eu/pl/public....
 
11.
European Parliament. (2021). Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). Retrieved from https://eur-lex.europa.eu/lega....
 
12.
Eurostat. (2023). Forests, forestry and logging. Retrieved from https://ec.europa.eu/eurostat/....
 
13.
FAO. (2020). FRA Platform | Global Forest Resources Data | Food and Agriculture Organization of the United Nations. Retrieved November 4, 2024, from https://fra-data.fao.org/asses....
 
14.
Ginga, C. P., Ongpeng, J. M. C., & Daly, Ma. K. M. (2020). Circular Economy on Construction and Demolition Waste: A Literature Review on Material Recovery and Production. Materials, 13(13), 2970.
 
15.
Gold, S., & Rubik, F. (2009). Consumer attitudes towards timber as a construction material and towards timber frame houses – selected findings of a representative survey among the German population. Journal of Cleaner Production, 17(2), 303–309.
 
16.
Goldstein, B., & Rasmussen, F. N. (2018). LCA of Buildings and the Built Environment. In M. Z. Hauschild, S. I. Olsen, & R. K. Rosenbaum (Eds.), Life Cycle Assessment: Theory and Practice (1st ed. 2018.). Cham: Springer International Publishing : Imprint: Springer.
 
17.
Goverse, T., Hekkert, M. P., Groenewegen, P., Worrell, E., & Smits, R. E. H. M. (2001). Wood innovation in the residential construction sector; opportunities and constraints. Resources, Conservation and Recycling, 34(1), 53–74.
 
18.
GUS. (2022). Statistical Yearbook of Forestry. Warszawa, Białystok: GUS.
 
19.
GUS. (2023a). Statistical Yearbook of Forestry 2023. Retrieved from https://stat.gov.pl/obszary-te....
 
20.
GUS. (2023b). Construction in 2022. Lublin: Statistical Office in Lublin.
 
21.
Heikkurinen, P. (2010). Image differentiation with corporate environmental responsibility. Corporate Social Responsibility and Environmental Management, 17(3), 142–152.
 
22.
Hoadley, R. B. (2000). Understanding wood: A craftsman’s guide to wood technology. Newtown, CT : [Emeryville, CA]: Taunton Press ; Publishers Group West [distributor].
 
23.
Jayawardana, J., Sandanayake, M., Jayasinghe, J. A. S. C., Kulatunga, A. K., & Zhang, G. (2023). A comparative life cycle assessment of prefabricated and traditional construction – A case of a developing country. Journal of Building Engineering, 72, 106550.
 
24.
Kendall H. Bassett, Dimakis Alkivadis G, Earl D. Hasenwinkle, Kerns John W, Selby John S, Richard E. Wagner, & Ronald C. Wilderman. (1996). Engineered structural wood products. Retrieved November 4, 2024, from https://typeset.io/papers/engi....
 
25.
Kibert, C. J. (2021). Sustainable construction: Green building design and delivery (Fifth edition.). Hoboken, NY: Wiley.
 
26.
Klein, A., Bockhorn, O., Mayer, K., & Grabner, M. (2016). Central European wood species: Characterization using old knowledge. Journal of Wood Science, 62(2), 194–202.
 
27.
Klein, A., & Grabner, M. (2015). Analysis of Construction Timber in Rural Austria: Wooden Log Walls. International Journal of Architectural Heritage, 9(5), 553–563.
 
28.
Landel, P. (2015, May 20). Modern timber construction in Sweden. Presented at the SP Technical Research Institute of Sweden, Kopenhaga. Retrieved from https://www.innobyg.dk/media/6....
 
29.
Lozano, R., Carpenter, A., & Huisingh, D. (2015). A review of ‘theories of the firm’ and their contributions to Corporate Sustainability. Journal of Cleaner Production, 106, 430–442.
 
30.
Manninen, H. (2014). Long-term outlook for engineered wood products in Europe. Retrieved November 4, 2024, from https://www.semanticscholar.or....
 
31.
Matthews, H. S., Hendrickson, C. T., & Weber, C. L. (2008). The Importance of Carbon Footprint Estimation Boundaries. Environmental Science & Technology, 42(16), 5839–5842.
 
32.
Mazur, Ł., & Olenchuk, A. (2023). Life Cycle Assessment and Building Information Modeling Integrated Approach: Carbon Footprint of Masonry and Timber-Frame Constructions in Single-Family Houses. Sustainability, 15(21), 15486.
 
33.
Mazur, Ł., Resler, M., Koda, E., Walasek, D., & Daria Vaverková, M. (2023). Energy saving and Green building Certification: Case study of commercial buildings in Warsaw, Poland. Sustainable Energy Technologies and Assessments, 60, 103520.
 
34.
Mazur, Ł., Szlachetka, O., Jeleniewicz, K., & Piotrowski, M. (2024). External Wall Systems in Passive House Standard: Material, Thermal and Environmental LCA Analysis. Buildings, 14(3), 742.
 
35.
McCarroll, D., Loader, N. J., Miles, D., Stanford, C., Suggett, R., Bronk Ramsey, C., Cook, R., et al. (2019). Oxygen isotope dendrochronology of Llwyn Celyn; One of the oldest houses in Wales. Dendrochronologia, 58, 125653.
 
36.
Ministry of the Environment. (2017). Wooden Construction—Research Report. Retrieved from https://www.gov.pl/web/klimat/....
 
37.
NCBR. (2023). Modular Multi-Family Building in Mysłowice – NCBR Project. Retrieved November 15, 2023, from https://inzynierbudownictwa.pl....
 
38.
Pacheco-Torgal, F. (2014). Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construction and Building Materials, 51, 151–162.
 
39.
Pędzik, M., Júda, M., Kminiak, R., Czerniejewska-Wolska, H., & Rogoziński, T. (2024). The effect of average chip thickness on the potentially respirable dust from CNC finish milling of wood-based materials. Drewno. Prace Naukowe, Doniesienia, Komunikaty = Wood. Research Papers, Reports, Announcements. Retrieved November 5, 2024, from https://www.drewno-wood.pl/The....
 
40.
Petruch, M., & Walcher, D. (2021). Timber for future? Attitudes towards timber construction by young millennials in Austria - Marketing implications from a representative study. Journal of Cleaner Production, 294, 126324.
 
41.
PKO Polish Bank S.A. (2022). More wood in construction? (Monitoring Branżowy). Analizy Sektorowe. Warszawa: Departament Analiz Ekonomicznych. Retrieved from https://www.pkobp.pl/media_fil....
 
42.
Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., Wu, G., et al. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333–359.
 
43.
Rebeggiani, S., Reddy, V., Olofsson, L., & Fredriksson, M. (2024). Towards In-Line Measurements of Sawn Wood Surfaces. In J. Andersson, S. Joshi, L. Malmsköld, & F. Hanning (Eds.), Advances in Transdisciplinary Engineering. IOS Press. Retrieved November 4, 2024, from https://ebooks.iospress.nl/doi....
 
44.
Roberts, N., Fyfe, R. M., Woodbridge, J., Gaillard, M.-J., Davis, B. A. S., Kaplan, J. O., Marquer, L., et al. (2018). Europe’s lost forests: A pollen-based synthesis for the last 11,000 years. Scientific Reports, 8(1), 716.
 
45.
Roibu, C.-C., Ważny, T., Crivellaro, A., Mursa, A., Chiriloaei, F., Ştirbu, M.-I., & Popa, I. (2021). The Suceava oak chronology: A new 804 years long tree-ring chronology bridging the gap between central and south Europe. Dendrochronologia, 68, 125856.
 
46.
Rowell, R. M. (Ed.). (2012). Handbook of Wood Chemistry and Wood Composites (0 ed.). CRC Press. Retrieved July 6, 2023, from https://www.taylorfrancis.com/....
 
47.
Ryan, C. O., Browning, W. D., Clancy, J. O., Andrews, S. L., & Kallianpurkar, N. B. (2014). Biophilic design patterns: Emerging nature-based parameters for health and well-being in the built environment, 8(2), 62–75.
 
48.
Rybak-Niedziółka, K., Starzyk, A., Łacek, P., Mazur, Ł., Myszka, I., Stefańska, A., Kurcjusz, M., et al. (2023). Use of Waste Building Materials in Architecture and Urban Planning—A Review of Selected Examples. Sustainability, 15(6), 5047.
 
49.
Sandier, K. R. (2003). Analyzing what’s recyclable in C&D debris, (44), 51–54.
 
50.
Sass-Klaassen, U., Vernimmen, T., & Baittinger, C. (2008). Dendrochronological dating and provenancing of timber used as foundation piles under historic buildings in The Netherlands. International Biodeterioration & Biodegradation, 61(1), 96–105.
 
51.
Sayigh, A. A. M. (Ed.). (2022). The importance of wood and timber in sustainable buildings. Cham: Springer.
 
52.
Sonnleithner, M. (2021). New Opportunities for Increasing the Renovation Rate of Buildings. Architecture Papers of the Faculty of Architecture and Design STU, 26(1), 2–9.
 
53.
Sosna, B. (2023). The value of the wooden construction market in Poland is now over 3 billion PLN. Retrieved from https://inzynierbudownictwa.pl....
 
54.
Spectis. (2023). Report on the Wooden Construction Market in Poland 2023-2028.
 
55.
Starzyk, A., Donderewicz, M., Rybak-Niedziółka, K., Marchwiński, J., Grochulska-Salak, M., Łacek, P., Mazur, Ł., et al. (2023). The Evolution of Multi-Family Housing Development Standards in the Climate Crisis: A Comparative Analysis of Selected Issues. Buildings, 13(8), 1985.
 
56.
Stocchero, A., Seadon, J. K., Falshaw, R., & Edwards, M. (2017). Urban Equilibrium for sustainable cities and the contribution of timber buildings to balance urban carbon emissions: A New Zealand case study. Journal of Cleaner Production, 143, 1001–1010.
 
57.
Sun, J. (2016). Mid-rise Timber Construction in Finland. A Study on Material, Technology and Market Maturity. Helsinki Metropolia University of Applied Sciences. Retrieved from https://core.ac.uk/download/pd....
 
58.
Teischinger, A., Krug, D., Sandberg, D., & Tobisch, S. (2023). Sawn-Timber Products. In P. Niemz, A. Teischinger, & D. Sandberg (Eds.), Springer Handbook of Wood Science and Technology, Springer Handbooks (pp. 1283–1346). Cham: Springer International Publishing. Retrieved November 4, 2024, from https://link.springer.com/10.1....
 
59.
Thun, T., & Svarva, H. (2018). Tree-ring growth shows that the significant population decline in Norway began decades before the Black Death. Dendrochronologia, 47, 23–29.
 
60.
Tollefson, J. (2017). The wooden skyscrapers that could help to cool the planet. Nature, 545(7654), 280–282.
 
61.
Van Niekerk, P. B., Brischke, C., & Niklewski, J. (2021). Estimating the Service Life of Timber Structures Concerning Risk and Influence of Fungal Decay—A Review of Existing Theory and Modelling Approaches. Forests, 12(5), 588.
 
62.
Vijayan, D. S., Devarajan, P., Sivasuriyan, A., Stefańska, A., Koda, E., Jakimiuk, A., Vaverková, M. D., et al. (2023). A State of Review on Instigating Resources and Technological Sustainable Approaches in Green Construction. Sustainability, 15(8), 6751.
 
63.
Vitas, A. (2020). Medieval oak chronology from Klaipėda, Lithuania. Dendrochronologia, 64, 125760.
 
64.
Walenta, J. (2021). The making of the corporate carbon footprint: The politics behind emission scoping. Journal of Cultural Economy, 14(5), 533–548.
 
65.
Wdowiak, A. (2017). Structure of Construction Timber. Journal of Civil Engineering, Environment and Architecture. Retrieved November 4, 2024, from http://doi.prz.edu.pl/pl/publ/....
 
66.
Werner, F., & Richter, K. (2007). Wooden building products in comparative LCA: A literature review. The International Journal of Life Cycle Assessment, 12(7), 470–479.
 
67.
Widyastuti, S., Said, M., Siswono, S., & Dian. (2019). Customer Trust through Green Corporate Image, Green Marketing Strategy, and Social Responsibility: A Case Study. EUROPEAN RESEARCH STUDIES JOURNAL, XXII(Issue 2), 83–99.
 
68.
Winkler, J., Jeznach, J., Koda, E., Sas, W., Mazur, Ł., & Vaverková, M. (2022). Promoting Biodiversity: Vegetation in a Model Small Park Located in the Research and Educational Centre. Journal of Ecological Engineering, 23(1), 146–157.
 
69.
Xue, F., & Zhao, J. (2021). Application Calibration Based on Energy Consumption Model in Optimal Design of Green Buildings. (S. Jiang, Ed.)Advances in Materials Science and Engineering, 2021, 1–9.
 
eISSN:2956-9141
Journals System - logo
Scroll to top