ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Anatomical features of wood cells and their size variations are key elements of wood identification. This research focuses on the microscopic differentiation between four Quercus species, two Red Oaks (Q. cerris and Q. rubra) and two White Oaks (Q. alba and Q. petraea). More specifically, it studies the variation of vessels width in earlywood and latewood. The results showed that in earlywood, Q. rubra exhibited the widest vessels (332.27 ± 65.21 μm), followed by Q. cerris (300.27 ± 57.62 μm), Q. petraea (286.09 ± 58.83 μm), and Q. alba (200.82 ± 43.50 μm), in descending order of size. Conversely, in latewood, Q. cerris displayed the largest vessels (83.89 ± 20.31 μm), with Q. rubra following closely (74.05 ± 20.31 μm). Q. petraea (35.34 ± 6.11 μm) and Q. alba (26.70 μm) maintained their order, appearing a consistent pattern between the wood growth phases. The variability in vessel dimensions was also supported by statistical differences among most species combinations both in earlywood and latewood. The investigation of certain vessel traits may serve as a valuable component of studies related to wood properties and species adaptability in the context of climate change.
REFERENCES (24)
1.
Eaton, E. G. S. D. J., Caudullo, G., Oliveira, S., & De Rigo, D. (2016). Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species. Public Office of the European Union, Luxembourg, 162-3.
 
2.
De Rigo, D., Enescu, C. M., Houston Durrant, T., & Caudullo, G. (2016). Quercus cerris in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds, 148-149.
 
3.
Feuillat, F., Dupouey, J. L., Sciama, D., & Keller, R. (1997). A new attempt at discrimination between Quercus petraea and Quercus robur based on wood anatomy. Canadian Journal of Forest Research, 27(3), 343-351.
 
4.
Feuillat, F., & Keller, R. (1997). Variability of oak wood (Quercus robur L., Quercus petraea Liebl.) anatomy relating to cask properties. American journal of enology and viticulture, 48(4), 502-508.
 
5.
Harlow, W.M. (1970). Inside Wood; Masterpiece of Nature. American Forestry Association, USA.
 
6.
IBM Corp. Released 2015. IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp.
 
7.
Kakaras, I. (2008). Wood as raw material: wood species, properties, applications. University of Thessaly, 186 p. (In Greek).
 
8.
Mai, C., Schmitt, U., & Niemz, P. (2022). A brief overview on the development of wood research. Holzforschung, 76(2), 102-119.
 
9.
Mantanis, G (2019). Wood Identification (origin, nomenclature, identification). Lectures. University of Thessaly, Greece. http://users.teilar.gr/~mantan.... (In Greek).
 
10.
Nepveu, G., Sciama, D., & Mothe, F. (1997). Estimation de la proportion des tissus présents dans un cerne de Chêne rouvre (Quercus petraea Liebl.) à partir de la connaissance des densités et des largeurs de son bois initial et de son bois final delivrées par microdensitométrie. Cahiers Lorrains Bois, 1.
 
11.
R Core Team (2023). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.
 
12.
Rao, R. V., Aebischer, D. P., & Denne, M. P. (1997). Latewood density in relation to wood fibre diameter, wall thickness, and fibre and vessel percentages in Quercus robur L. IAWA Journal, 18(2), 127-138.
 
13.
Rogers, R. Quercus alba (White oak). Available at: https://www.srs.fs.usda.gov/pu... (Accessed: 29/3/2023).
 
14.
Ruffinatto, F., Negro, F., & Crivellaro, A. (2023). The Macroscopic Structure of Wood. Forests, 14(3), 644.
 
15.
Sander, I.L. Quercus rubra L. (Northern Red Oak). Available at: https://www.srs.fs.usda.gov/pu.... (Accessed: 29/3/2023).
 
16.
Sharma, M., Sharma, C. L., Kharkongor, B. M., & Carter, M. J. (2011). Wood anatomical variations in some species of Quercus of Meghalaya. Journal of the Indian Academy of Wood Science, 8, 152-157.
 
17.
The wood database. Available at: https://www.wood-database.com. (Accessed: 26/4/2023).
 
18.
Tsoumis, G. (1989). Science and technology of wood: Structure, properties, utilization, Van Nostrand Reinhold, New York, USA, pp 494.
 
19.
Von Arx, G., Carrer, M., Crivellaro, A., De Micco, V., Fonti, P., Lens, F., ... & Sass-Klaassen, U. (2021). Q-NET–a new scholarly network on quantitative wood anatomy. Dendrochronologia, 70, 125890.
 
20.
Von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K., & Carrer, M. (2016). Quantitative wood anatomy—practical guidelines. Frontiers in plant science, 7, 781.
 
21.
Voulgaridis, E. (2015). Quality and uses of wood. Association of Greek Academic Libraries HEALINK. Available at: https://repository.kallipos.gr.... (In Greek).
 
22.
Wilis, J.C. (1973). A Dictionary of the flowering plants and ferns. Cambridge University Press, Cambridge.
 
23.
Woodcock, D. W. (2022). A Typology of Vessel Patterning in Trees with Examples from the Fossil Record. International Journal of Plant Sciences, 183(3), 235-250.
 
24.
Zasada, J. C., & Zahner, R. (1969). Vessel element development in the earlywood of red oak (Quercus rubra). Canadian Journal of Botany, 47(12), 1965-1971.
 
eISSN:2956-9141
Journals System - logo
Scroll to top