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THE NUMERICAL MODELING OF ADHESIVE JOINTS
IN REINFORCEMENT OF WOODEN ELEMENTS,
SUBJECTED TO BENDING AND SHEARING

The subject of this paper is a formulation and discussion about an adhesive joint
model in cases of reinforcement or reconstruction of weakened cross-sections of
wooden elements. The problem is modeled within the linear theory of elasticity as
a  plane  stress  case.  It  is  assumed  that  wood  is  an  orthotropic  material.
Reinforcement is achieved by attaching a covering plate, and reconstruction by
introduction  of  an  insert  at  a  weakened  (deteriorated)  zone  of  the  element.
Analysis of the influence of covering plates and insert thickness on the stress state
in  adhesive  and  in  adherends  is  carried  out.  Elements  subjected  to  bending
moments or bending moments with shear forces are considered.

Keywords: wood,  adhesive  joints,  element  reinforcement,  reconstruction  of
weakened cross-section, stress concentration, numerical modeling

Introduction 

An adhesive joint  is  an  assembly of  two plane stress  elements  connected at
a common surface  by an  adhesive.  It  is  assumed that  the  adherends  and the
adhesive are of constant or moderately varying thickness.

An adhesive joint is modeled as a plane two-dimensional assembly parallel
to the plane 0XY in the Cartesian set of co-ordinates 0XYZ. Both adherends and
an adhesive projected onto the plane 0XY form the same figure of an arbitrary
shape.

It is assumed that effects of bending in adherends are negligible – they are
not taken into account. Thus, it was further assumed, that stresses are constant
across an adherend thickness and form plane stress states parallel to the plane
0XY. The layout of an adhesive joint is presented in figure 1.

The adherends 1 and 2 have thickness described by functions g1 = g1(x, y)
and  g2 = g2(x, y).  The  mid-plane  of  the  adhesive  is  given  by  the  function
s = s(x, y). The thickness of adhesive t = t(x, y) is always greater than zero.
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Fig. 1. Layout of adhesive joint: 1  adherend 1, 2  adherend 2, 3  adhesive

Adherends  are  made  of  orthotropic  materials,  with  the  principal  axes  of
orthotropy coinciding with the axes X and Y. An orthotropic material in a plane
stress state is described by the moduli of longitudinal elasticity  Ekx ,  Eky , the
shear moduli Gkxy and Poisson’s ratios νkxy , νkyx (where k = 1, 2).

Adhesive is modelled as an isotropic linear-elastic medium characterised by
the material parameters: Young’s modulus  Es, shear modulus  Gs and Poisson’s

ratio νs , where Es = 2(1 + νs)Gs. Adhesive is subjected to the stresses x = x(x,y),
y = y(x, y) tangent to the mid-plane and the stress N = N  (x, y) normal to this
plane. These stresses are assumed to be constant across the adhesive thickness.

If  an adherend thickness is  larger than zero on its edge, then the edge is
called  non-sharp.  Stresses  acting  at  non-sharp  edges  of  an  adherend  k are
denoted by pkx and pky (k = 1, 2). It is assumed that the stresses pkx and pky are
parallel to the axes X and Y, respectively, and that they are constant across the
adherends  thickness.  They are  treated  as  a  given  external  loading  acting  on
adherends in the plane parallel to 0XY. The adherend thickness along the entire
edge or on its fragment can be zero. In that case the edge is called sharp [Rapp
2015a, 2016].

If the external surfaces of an adherend forming the edge  K intersect at an
angle  α > 0,  then  the  edge  K of  the  adherend  is  called  obtuse  sharp  edge
(fig. 2a). If the external surfaces of the adherend forming the sharp edge K are
mutually  tangent  (α = 0),  then  the  edge  K is  called  tangential  sharp  edge
(fig. 2b). No edge loading is defined along a sharp edge.

a) b)

Fig.  2.  Cross-sections  of  two  types  of  sharp  edges:  a)  obtuse  sharp  edge  K,
b) tangential sharp edge K
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Displacements  in  the  adherends  1  and  2  are  defined  by  the  functions
u1 = u1(x, y) and u2 = u2(x, y) for the direction X and the functions υ1 = υ1(x, y)
and  υ2 = υ2(x,  y)  for  the  direction  Y.  The  displacements  u1, u2,  υ1,  υ2 are
considered  as  unknowns.  Equations  of  the  theory  of  elasticity  expressed  in
displacements  with  boundary conditions  for  the  plane  stress  state  have  been
formulated in the paper [Rapp 2015a]. Knowing the displacements functions u1,
u2,  υ1,  υ2 one can determine the stress and strain states in the adhesive and the
adherends.

An overview of problems related to the reinforcement or reconstruction of
deteriorated  elements  by  means  of  adhesive  joints  in  various  branches  of
technology is  presented  in  the  following literature  [Ahn  and Springer  2000;
Bahei-El-Din and Dvorak 2001; Boss et al. 2003; Kaye and Heller 2002; Kumar
et al. 2006; Rapp 2015b].

The present paper can be viewed as a continuation of the analysis presented
in [Rapp 2016], where the problem of axially loaded adherends was addressed.

Materials and methods

It is assumed, that adherend 2 is subjected to a bending moment M (fig. 3a) or
a moment  M together with a shear force  T (fig. 3b) acting in the plane 0XY.
Adherend 1 is not loaded.

a) b)

Fig. 3. Loading of the adherend 2: a) moment M, b) moment M with shear force T

If adherend 1 has been attached to adherend 2 of a constant thickness, then
the total thickness of both adherends is greater than that of adherend 2. Such an
adhesive  joint  is  a  reinforcement  of  adherend  2  with  a  covering  plate
(adherend 1). Such types of reinforcement of adherend 2 with covering plates
with various geometry of edges are presented in figure 4.

If there is a local loss of material in adherend 2, than new material can be
inserted to restore the original thickness of adherend 2. Such an adhesive joint is
considered  as  a  reconstruction  of  adherend  2  with  an  insert (adherend  1).
Variants of such a reconstruction with various types of inserts are presented in
figure 5.
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Fig.  4.  Variants  of  reinforcement  of  adherend 2 by covering plates:  a)  constant
thickness  covering plate,  b)  covering plate  with obtuse sharp edges,  c)  covering
plate with tangential sharp edges

Fig. 5. Variants of reconstruction of adherend 2 with inserts: a) constant thickness
insert, b) insert with obtuse sharp edges, c) insert with tangential sharp edges

Anchoring zones of covering plates and inserts should be short. Stresses in
both adherends between the anchoring zones should be uniform and constant and
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stresses in the adhesive equal to zero. There should be no stress concentrations
in the adhesive.

Meeting the above conditions depends strongly on edge types and varying
thickness of covering plates and inserts in anchoring zones.

This paper is devoted to the analysis of this influence on stress states in the
adhesive and the adherends and to a proper choice of an anchoring zone range.

Adhesive  joints  analysed  in  the  paper  may  be  used  to  restore  wooden
structures  in  historic  buildings.  Figure  6  shows  an  example  of  attic  beams
reconstruction, where dark spots represent the original substance of beams and
the light elements are the layers of new wood used to restore the original cross-
-section of the beams [Rapp 2015b].

Fig. 6. An example of attic beams reconstruction

The equations for the displacements u1, u2,  υ1,  υ2 form a set of four elliptic
partial differential equations of the second order. The existence and uniqueness
of  the  solution  to  the  set  of  elliptic  equations  with  appropriate  boundary
conditions are ensured [Fichera 1972].

The boundary value problems in displacements are solved here, using the
classical finite-difference method [Forsythe and Wasow 1960;  Cea 1964]. The
method  is  based  on  a  replacement  of  differential  operators  with  difference
operators defined in a discrete set of points (nodes), which are intersections of
lines forming a difference mesh in a rectangle 2lx × 2ly.

The difference mesh has a regular rectangular shape with side lengths Δx and
Δy. There are  m nodes in the direction X (j = 1, 2, ...,  m), and  n nodes in the
direction Y (i = 1, 2, ...,  n), with n,  m ≥ 5. It is assumed that  n and m are odd
numbers. The unknowns in the finite-difference method are the values of the
displacement functions ukr,s =  uk(xr ,  ys) and υkr,s = υk(xr ,  ys) for  k = 1, 2 or the
values of the shear stress functions  τxr,s =  τx(xr ,  ys) and  τyr,s =  τy(xr ,  ys) in the
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adhesive  defined  in  the  nodes  of  the  finite-difference  mesh.  Derivatives  of
functions are approximated with central differences.

Displacement  equations  are  formulated  for  all  the  nodes  of  the  finite-
-difference  mesh,  excluding  those,  where  kinematic  boundary conditions  are
defined and those at sharp edges. In the case of nodes with prescribed kinematic
boundary conditions, if they are constrained, zero displacements are substituted.
For  nodes  on  sharp  edges,  static  boundary  conditions  are  applied.  The
application of central differences to nodes at the edges, with the exception of
sharp ones, results in fictitious values of unknown functions for nodes falling out
of  the  rectangular  domain  2lx ×  2ly.  Those  fictitious  values  of  the  unknown
functions are eliminated by means of static boundary conditions for non-sharp
edges. In the case of sharp edges, the fictitious nodes beyond the rectangular
domain 2lx × 2ly are not introduced. For internal nodes at sharp edges, central
differences are  used for  the  direction along the edge,  while  for  the  direction
across edges and for corner nodes unilateral differences spanning three nodes in
the direction X and Y are used. A complete set of linear equations by the finite
difference method in  terms  of  displacements  consists  of  4nm equations.  The
matrix formed from coefficients of equations is not symmetric and is singular
because the adhesive joint itself is a mechanism. Non-singularity of the matrix
and uniqueness of the solution for a system expressed in terms of displacements
is obtained, if kinematic boundary conditions for displacements  uk and  υk are
imposed to make the adhesive joint geometrically stable.

Test computations indicate, that the finite-difference meshes from the range
41 ≤ m, n ≤ 51 yield a relative error of solution not exceeding 0.5%.

Results and discussion 

It  is  assumed  that  the  entire  loading  is  applied  at  the  edges  x = ±lx of  the
adherend  2.  Adherends  1  and  2  carry  the  loading  together  in  the  range
– lx < x < lx.  Stresses in the adhesive are relatively large in the areas near the
edges  x = ±lx.  These areas of the joint  are considered as anchoring zones of
a covering plate or an insert (fig. 19). In these areas, the adhesive joint carries an
appropriately large, assumed portion of the loading.

Stress distributions in anchoring zones depend on the adherends thickness at
the edges x = ±lx. It was assumed in the  analysis, that covering plates and inserts
can have a constant thickness  g1 = const,  as in figures 4a and 5a or varying
thickness g1(x, y) with obtuse sharp edges – figures 4b and 5b or with tangential
sharp  edges  –  figures  4c  and  5c.  Curvilinear  shapes  of  covering  plates  and
inserts are assumed in a parabolic form [Rapp 2016].

An adhesive joint consisting of two flat wooden adherends with dimensions
2lx × 2ly = 10.0 cm × 8.0 cm and g1 = 0.2 cm, g2 = 1 cm is considered.
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It is assumed that the principal axes of wood orthotropy coincide with the
direction X parallel to the wood grain and the radial direction Y perpendicular to
the wood grain. Material properties were assumed for spruce [Neuhaus 1994]:

 modulus of elasticity parallel to grain Ex = 1.2·106 N/cm2,
 modulus of elasticity perpendicular to grain Ey = 0.8·105 N/cm2,

 shear modulus Gxy = 0.6·105 N/cm2,
 Poisson’s ratios νxy = 0.03, νyx = 0.45 (notation of νxy, νyx by Rapp [2015]). 
Material  parameters  for  adhesive  were  assumed  as:  Gs = 45000 N/cm2,

Es = 121500 N/cm2, νs = 0.35 and the thickness t = 0.04 cm.
The loading of adherend 2 causes stresses τx, τy, σN in the adhesive and plane

stress states in the adherends with σkx, σky, τkxy (k = 1, 2).
In particular cases, some of these stresses are dominant in that they play the

main role in carrying loading.
For the joints presented in figures 4 and 5 the loading form shown in figure 3

was assumed and the resulting two-dimensional boundary value problem was
solved using the finite difference method using the extended precision format.

For a constant  moment  M (fig.  3a) the stress  nx in  adhesive (nx it  is  the
resultant of the shear stress τx and normal stress σN) and normal stresses σ1x, σ2x

in adherends are dominant.
Distributions and values of the stress nx in adhesive and the stresses σ1x, σ2x

in adherends for the loading  M = 10 N·cm are shown in figures 7-11. It was
assumed that the moments are applied to the edges of adherend 2 as linearly
distributed  normal  stress.  No  graphs  for  the  example  from  figure  5a  are
presented because they only differ from those in figure 7a by values, featuring
the  same  shape.  The  part  of  the  adhesive  joint  over  the  X axis  (fig.  3a)  is
subjected to  compression,  and under  the  X axis  –  to  tension in  the  form of

a) Stress nx in adhesive b) Stress σ1x in adherend 1 c) Stress σ2x in adherend 2
    max |nx| = 0.35724 N/cm2     σ1x(0, ±ly) = ±0.78146 N/cm2     |σ2x(±lx, ±ly)| = 0.9375 N/cm2

    σ2x(0, ±ly) = ±0.78148 N/cm2

Fig. 7. Stresses in adhesive joint with covering plate of constant thickness (fig. 4a)
subjected to M = 10 N·cm
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a) Stress nx in adhesive b) Stress σ1x in adherend 1 c) Stress σ2x in adherend 2
    max |nx| = 0.16992 N/cm2     |σ1x(±lx, ±ly)| = 0.85109 N/cm2     |σ2x(±lx, ±ly)| = 0.9375 N/cm2

    σ1x(0, ±ly) = ±0.78219 N/cm2     σ2x(0, ±ly) = ±0.78223 N/cm2

    min |σ1x| = 0.70829 N/cm2

Fig. 8. Stresses in adhesive joint with covering plate of varying thickness and obtuse
sharp edges (fig. 4b) subjected to M = 10 N·cm

a) Stress nx in adhesive b) Stress σ1x in adherend 1 c) Stress σ2x in adherend 2
    max |nx| = 0.14513 N/cm2     |σ1x(±lx, ±ly)| = 1.3230 N/cm2     |σ2x(±lx, ±ly)| = 0.9375 N/cm2

    σ1x(0, ±ly) = ±0.78388 N/cm2     σ2x(0, ±ly) = ±0.7839 N/cm2

    min |σ1x| = 0.70055 N/cm2

Fig.  9.  Stresses  in  adhesive  joint  with  covering  plate  of  varying  thickness  and
tangential sharp edges (fig. 4c) subjected to M = 10 N·cm 

a) Stress nx in adhesive b) Stress σ1x in adherend 1 c) Stress σ2x in adherend 2
    max |nx| = 0.17720 N/cm2     |σ1x(±lx, ±ly)| = 0.90436 N/cm2     |σ2x(±lx, ±ly)| = 0.9375 N/cm2

    σ1x(0, ±ly) = ±0.93751 N/cm2     σ2x(0, ±ly) = ±0.93755 N/cm2

    min |σ1x| = 0.82899 N/cm2     max |σ2x| = 0.96065 N/cm2

Fig. 10. Stresses in adhesive joint with insert of varying thickness and obtuse sharp
edges (fig. 5b) subjected to M = 10 N·cm
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a) Stress nx in adhesive b) Stress σ1x in adherend 1 c) Stress σ2x in adherend 2
    max |nx| = 0.16028 N/cm2     |σ1x(±lx, ±ly)| = 1.4838 N/cm2     |σ2x(±lx, ±ly)| = 0.9375 N/cm2

    σ1x(0, ±ly) = ±0.93778 N/cm2     σ2x(0, ±ly) = ±0.93784 N/cm2

    min |σ1x| = 0.80164 N/cm2     max |σ2x| = 0.96852 N/cm2

Fig. 11. Stresses in adhesive joint with insert of varying thickness and tangential
sharp edges (fig. 5c) subjected to M = 10 N·cm

linearly distributed normal stress. In adhesive joints loaded by moments, in the
tensile and compressive fragments, stress functions along the X axis in adhesive
and adherends for each set value  y ≠ 0 are similar to the corresponding stress
functions in adhesive joints loaded axially. Thus, for the adhesive joints loaded
by moments,  the  width  of  anchoring  zone  can  be  assessed  using  the  same
expressions as in the joints loaded axially, as given in [Rapp 2016].

Normal stresses between anchoring zones are approximately equal in both
adherends, they are linearly distributed along the Y axis  and constant along the
X axis.

In order to assess the effectiveness  of reinforcement or reconstruction of the
adherend 2 using the adherend 1, the normal stresses σ1x and σ2x in adherends 1
and 2 were computed and compared with the stresses, which would occur in
uniform  elements  equivalent  to  the  connected  adherends  1  and  2.  It  was
concluded,  that  the stresses for the elements with covering plates and inserts
differ insignificantly (not more than ±0,339% in the analysed cases) from the
ones in the uniform elements. A slight difference, with an error within a range of
±0.01 to ±0.05%, is obtained for the case with an insert with varying thickness
and obtuse sharp edges.

In the section – lx + lanch ≤ x ≤ lx – lanch , i.e. in the region of reinforcement or
reconstruction, the analysed adhesive joints carry the bending moment in a way
very similar to that for a uniform element with dimensions equal to the sum of
the  dimensions  of  adherends  1  and  2.  The  closer  this  similarity  in  the
reinforcement or reconstruction zone, the smaller the flexibility of the adhesive.

The second analysed problem is related to the way in which adhesive joints
with covering plates or inserts, loaded according to figure 3b are subjected to
a shear force T. In order to yield a constant shear force in cross-sections parallel
to the Y axis , loading of an adhesive joint has to form a couple ±T. The resulting
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moment equal to –2Tlx has to be in equilibrium with another moment of the
value 2Tlx. This condition can be met in many ways. The best possibility is to
adopt the stresses  τ1xy and  τ2xy in adherends  resulting mainly from the shear
force T, i.e. not depending or depending insignificantly on the remaining loading
acting on the adhesive joint. That is why the moment –2Tlx resulting from the
couple ±T was equilibrated by two moments M = Tlx Then the normal stresses
σ1x and  σ2x result, which are not superimposed onto the shear stresses  τ1xy and
τ2xy.

The force  T is carried by the shear stress  τy in the adhesive and the shear
stresses τ1xy and τ2xy in the adherends. Their distributions for the adhesive joints
shown  in  figures  4  and  5  are  presented  in  figures  12-16.  Large  stress
concentrations  of  τy occurring  in  the  adherends  of  constant  thickness  are
significantly  reduced  (6.1  to  7.5  times)  if  joints  with  sharp  edges  are  used
(figs. 17 and 18).

The reduction of stress concentrations  τy and anchoring zone length in the
joints loaded by shear forces are better viewed  in the magnified stress profiles
shown  in  figure  19.  Contrary  to  the  cases  with  axial  forces  or  moments,
anchoring zone lenghts are different now: lanch ≈ 0.6 cm for the adherends with
a constant thickness (figs. 19a, d) and  lanch ≈ 1.6 cm for the cases with sharp
edges (figs. 19b, c, e, f).

There are no simple methods to assess the length of anchoring zones for the
cases with shear forces. 

The shear stress  τ2xy in the cross-sections  x = ±lx of the loaded adherend 2
have a parabolic distribution, corresponding to the loading in the form of shear
forces T = ±1 N. The maximal shear stress in adherend 2 is located at the X axis
and equals τ2xy(± lx , 0) = –0.23438 N/cm2 (fig. 18a).

a) Stress τy in adhesive b) Stress τ1xy in adherend 1 c) Stress τ2xy in adherend 2

    ty(±lx, 0) = ±0.22569 N/cm2     t1xy(0, 0) = –0.15612 N/cm2     t2xy(0, 0) = –0.15612 N/cm2

    t2xy(±lx, 0) = –0.1875 N/cm2

Fig. 12. Stresses due to T = –1 N in adhesive joint with covering plate of constant thickness as
in figure 4a
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a) Stress τy in adhesive b) Stress τ1xy in adherend 1 c) Stress τ2xy in adherend 2

    ty(±lx, 0) = ±0.03707 N/cm2     t1xy(0, 0) = –0.15608 N/cm2     t2xy(0, 0) = –0.15608 N/cm2

    t1xy(±lx, 0) = –0.18527 N/cm2     t2xy(±lx, 0) = –0.1875 N/cm2

Fig. 13. Stresses due to T = –1 N in adhesive joint with covering plate of varying thickness
and obtuse sharp edges as in figure 4b

a) Stress τy in adhesive b) Stress τ1xy in adherend 1 c) Stress τ2xy in adherend 2

    max |ty| = 0.03569 N/cm2     t1xy(0, 0) = –0.15651 N/cm2     t2xy(0, 0) = –0.15651 N/cm2

    t1xy(±lx, 0) = –0.19247 N/cm2     t2xy(±lx, 0) = –0.1875 N/cm2

Fig. 14. Stresses due to T = –1 N in adhesive joint with covering plate of varying thickness
and tangential sharp edges as in figure 4c

a) Stress τy in adhesive b) Stress τ1xy in adherend 1 c) Stress τ2xy in adherend 2

    ty(±lx, 0) = ±0.036564 N/cm2     t1xy(0, 0) = –0.1873 N/cm2     t2xy(0, 0) = –0.1873 N/cm2

    t1xy(±lx, 0) = –0.1864 N/cm2     t2xy(±lx, 0) = –0.1875 N/cm2

Fig. 15. Stresses due to T = –1 N in adhesive joint with insert of varying thickness and obtuse
sharp edges as in figure 5b

a) Stress τy in adhesive b) Stress τ1xy in adherend 1 c) Stress τ2xy in adherend 2

    max |ty| = 0.043044 N/cm2     t1xy(0, 0) = –0.18735 N/cm2     t2xy(0, 0) = –0.18735 N/cm2

    t1xy(±lx, 0) = –0.19116 N/cm2     t2xy(±lx, 0) = –0.1875 N/cm2

Fig.  16.  Stresses  due  to  T =  –1 N in adhesive joint  with insert  of  varying thickness  and
tangential sharp edges as in figure 5c
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At the extreme cross-sections of adherend 1, which is not loaded, for the
case of non-sharp edges the shear stress  τ1xy is zero, while for the sharp edges
case, as unilateral internal boundaries, the stress varies from –0.18527 N/cm2 to
–0.19247 N/cm2. These values are close to –0,1875 N/cm2 which is the stress at
the extreme cross-sections of adherend 2. In the case of covering plates or inserts
with sharp edges, no shear stress concentrations τ1xy are observed, contrary to the
case of the normal stress concentrations  σ1x in joints loaded by axial forces or
moments.

a) Adhesive joint with covering plate of constant thickness as in figure 4a

Stress τy in adhesive Stress τ1xy in adherend 1 Stress τ2xy in adherend 2

ty(±lx, 0) = ±0.22569 N/cm2 t1xy(0, 0) = –0.15612 N/cm2 t2xy(0, 0) = –0.15612 N/cm2

t2xy(±lx, 0) = –0.1875 N/cm2

b) Adhesive joint with covering plate of varying thickness and obtuse sharp edges as in
figure 4b

Stress τy in adhesive Stress τ1xy in adherend 1 Stress τ2xy in adherend 2

ty(±lx, 0) = ±0.03707 N/cm2 t1xy(0, 0) = –0.15608 N/cm2 t2xy(0, 0) = –0.15608 N/cm2

t1xy(±lx, 0) = –0.18527 N/cm2 t2xy(±lx, 0) = –0.1875 N/cm2

c) Adhesive joint with covering plate of varying thickness and tangential sharp edges as
in figure 4c

Stress τy in adhesive Stress τ1xy in adherend 1 Stress τ2xy in adherend 2

max |ty| = 0.03569 N/cm2 t1xy(0, 0) = –0.15651 N/cm2 t2xy(0, 0) = –0.15651 N/cm2

t1xy(±lx, 0) = –0.19247 N/cm2 t2xy(±lx, 0) = –0.1875 N/cm2

Fig.  17. Stress profiles for shear force  T = –1 N loading in adhesive joints  with
covering plates
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The distributions of shear stresses  τ1xy and τ2xy in the adherends in section
–lx ≤ x ≤ lx can  be  considered  as  parabolic,  too.  Stress  profiles  presented  in
figures 17 and 18 indicate the effect of displacement equilibration and gradual
inclusion of adherends segments to the interaction along the anchoring zones for
the cases with sharp edges.

Shear stresses in direction X in adherends between anchoring zones, remain
constant with a great level of accuracy. They have values differing by a fraction
of a percent from those in a uniform element of the thickness g2 = 1.2 cm in the
reinforcement case or g2 = 1.0 cm in the reconstruction case.

a) Adhesive joint with insert of constant thickness as in figure 5a

Stress τy in adhesive Stress τ1xy in adherend 1 Stress τ2xy in adherend 2

ty(±lx, 0) = ±0.27348 N/cm2 t1xy(0, 0) = –0.18734 N/cm2 t2xy(0, 0) = –0.18734 N/cm2

t2xy(±lx, 0) = –0.23438 N/cm2

b) Adhesive joint with insert of varying thickness and obtuse sharp edges as in figure 5b

Stress τy in adhesive Stress τ1xy in adherend 1 Stress τ2xy in adherend 2

ty(±lx, 0) = ±0.036564 N/cm2 t1xy(0, 0) = –0.1873 N/cm2 t2xy(0, 0) = –0.1873 N/cm2

t1xy(±lx, 0) = –0.1864 N/cm2 t2xy(±lx, 0) = –0.1875 N/cm2

c) Adhesive joint with insert of varying thickness and tangential sharp edges as in fig. 5c 

Stress τy in adhesive Stress τ1xy in adherend 1 Stress τ2xy in adherend 2

max |ty| = 0.043044 N/cm2 t1xy(0, 0) = –0.18735 N/cm2 t2xy(0, 0) = –0.18735 N/cm2

t1xy(±lx, 0) = –0.19116 N/cm2 t2xy(±lx, 0) = –0.1875 N/cm2

Fig.  18. Stress profiles for shear force  T = –1 N loading in adhesive joints  with
inserts
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Fig. 19. Stress profiles τy in adhesive joints with covering plates and inserts loaded
by shear forces T = ±1 N. Graphical comparison of anchoring lengths

a) Adhesive joint with covering plate
 of constant thickness as in figure 4a 

ty(±lx, 0) = ±0.22569 N/cm2

b) Adhesive joint with covering plate
 of varying thickness, obtuse sharp

edges as in figure 4b
ty(±lx, 0) = ±0.03707 N/cm2

c) Adhesive joint with covering plate
 of varying thickness, tangential sharp

edges as in figure 4c
max |ty| = 0.03569 N/cm2

d) Adhesive joint with insert of
constant thickness as in figure 5a

ty(±lx, 0) = ±0.27348 N/cm2

e) Adhesive joint with insert of
varying thickness, obtuse sharp edges

 as in figure 5b
ty(±lx, 0) = ±0.036564 N/cm2

f) Adhesive joint with insert of
varying thickness, tangential sharp

edges as in figure 5c
max |ty| = 0.043044 N/cm2
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Conclusions

In  adhesive  joints  loaded  by  moments,  extreme  values  of  the  stress  nx in
adhesive are found at edges of covering plates and inserts of constant thickness.
The stress values nx at corners of sharp edges are reduced by about 50-60%. The
stress nx in adhesive at tangential sharp edges is zero. Covering plates or inserts
with tangential sharp edges take over the stresses from adherend 2 gradually, the
maximum stress nx in adhesive is found in the anchoring zone. Due to this fact,
a risk of delamination at the edges is decreased. The maximal values of the stress
nx are smaller in this case than those at corners of obtuse sharp edges.

Adhesive joints with adherends of constant thickness feature the stress σ1x in
covering plates and inserts, which increases from zero at the edges x = ±lx and
rapidly reaches an approximately constant level between anchoring zones. In the
loaded adherend 2 the stress  σ2x at  the  edges  x =  ±lx assumes  the boundary
values, then decreases to a constant value, as in the adherend 1.

The level of stress σ1x in adhesive joints with covering plates and inserts with
obtuse sharp edges is constant and insignificantly exceeds the stress value of the
load, there are only some small fluctuations at the anchoring zones. 

The distribution of stress  nx in adhesive for adhesive joints with covering
plates or inserts with tangential sharp edges is advantageous. However, a local
increase of values of the stress σ1x at the edges of covering plates and inserts is
observed.  This  increase  reaches  about  100%  of  the  mean  stress  value  for
a covering plate and about 60% for an insert.  The reason for this local stress
increase, is a small thickness of the adherend 1 at a sharp edge.

In  all  variants  of  adhesive  joints  loaded  by moments,  stress  in  adhesive
between anchoring zones is close to or equal to zero. 

On the other hand normal stresses in adherends between anchoring zones,
feature distributions approximately linear and coinciding with ±0,3% accuracy
with the normal stress distribution in an element subjected to bending. 

Shear  stress  concentrations  τy in  adhesive  for  adhesive  joints  loaded  by
a constant  shear  force,  are  located  in  anchoring  zones  and  are  of  similar
character as those for  stress τx in the cases of loading by moments. The stresses
τy in adhesive for all the cases of joints loaded by a shear force are close to or
equal to zero between the anchoring zones. In the anchoring zones shear stress
concentrations τxy in adherends are smaller than normal stress concentrations for
joints under bending and are practically non-existent for joints with sharp edges.
Shear stress distributions  τxy for the adherends coincide with a 0.2% accuracy
with the shear stress distribution for a uniform element subjected to shearing.

The comparison of stress distributions allows us to conclude, that the use of
covering plates or inserts with obtuse sharp edges can be an effective method of
reinforcement or reconstruction of a weakened element.



36 Piotr RAPP

The  problems  presented  in  this  paper  were  solved  using  the  author’s
computer program SPOINA (ADHESIVE). The program, based on the formulae
derived by the author, solves the set of four elliptic partial differential equations
of the second order by means of a finite-difference method and presents the
results in table and graph form.
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